bp: refactored
This commit is contained in:
@@ -4,47 +4,15 @@
|
||||
#include <immintrin.h>
|
||||
|
||||
void NeuralNetwork::Learning::BackPropagation::teach(const std::vector<float> &input, const std::vector<float> &expectation) {
|
||||
|
||||
network.computeOutput(input);
|
||||
|
||||
resize();
|
||||
|
||||
computeSlopes(expectation);
|
||||
|
||||
updateWeights(input);
|
||||
|
||||
std::swap(deltas,lastDeltas);
|
||||
}
|
||||
|
||||
|
||||
void NeuralNetwork::Learning::BackPropagation::updateWeights(const std::vector<float> &input) {
|
||||
|
||||
for(std::size_t layerIndex=1;layerIndex<network.size();layerIndex++) {
|
||||
auto &layer=network[layerIndex];
|
||||
auto &prevLayer=network[layerIndex-1];
|
||||
|
||||
std::size_t prevLayerSize=prevLayer.size();
|
||||
std::size_t layerSize=layer.size();
|
||||
|
||||
for(std::size_t j=1;j<layerSize;j++) {
|
||||
|
||||
float delta =slopes[layerIndex][j]*learningCoefficient;
|
||||
|
||||
//momentum
|
||||
delta += momentumWeight * lastDeltas[layerIndex][j];
|
||||
|
||||
deltas[layerIndex][j]=delta;
|
||||
|
||||
layer[j].weight(0)+=delta - weightDecay *layer[j].weight(0);
|
||||
|
||||
for(std::size_t k=1;k<prevLayerSize;k++) {
|
||||
if(layerIndex==1) {
|
||||
layer[j].weight(k)+=delta*input[k-1] - weightDecay * layer[j].weight(k);
|
||||
} else {
|
||||
layer[j].weight(k)+=delta*prevLayer[k].output() - weightDecay * layer[j].weight(k);
|
||||
}
|
||||
}
|
||||
}
|
||||
computeDeltas(input);
|
||||
if(++currentBatchSize >= batchSize) {
|
||||
updateWeights();
|
||||
endBatch();
|
||||
currentBatchSize=0;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -71,4 +39,55 @@ void NeuralNetwork::Learning::BackPropagation::computeSlopes(const std::vector<f
|
||||
}
|
||||
}
|
||||
|
||||
void NeuralNetwork::Learning::BackPropagation::computeDeltas(const std::vector<float> &input) {
|
||||
for(std::size_t layerIndex=1;layerIndex<network.size();layerIndex++) {
|
||||
auto &layer=network[layerIndex];
|
||||
auto &prevLayer=network[layerIndex-1];
|
||||
|
||||
std::size_t prevLayerSize=prevLayer.size();
|
||||
std::size_t layerSize=layer.size();
|
||||
|
||||
for(std::size_t j=1;j<layerSize;j++) {
|
||||
float update = slopes[layerIndex][j];
|
||||
for(std::size_t k=0;k<prevLayerSize;k++) {
|
||||
float inputValue = 0.0;
|
||||
if(layerIndex==1 && k!=0) {
|
||||
inputValue = input[k-1];
|
||||
} else {
|
||||
inputValue= prevLayer[k].output();
|
||||
}
|
||||
if(currentBatchSize == 0) {
|
||||
deltas[layerIndex][j][k] = update * inputValue;
|
||||
} else {
|
||||
deltas[layerIndex][j][k] += update * inputValue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void NeuralNetwork::Learning::BackPropagation::updateWeights() {
|
||||
|
||||
bool enableMoments = momentumWeight > 0.0;
|
||||
|
||||
for(std::size_t layerIndex=1;layerIndex<network.size();layerIndex++) {
|
||||
auto &layer = network[layerIndex];
|
||||
auto &prevLayer = network[layerIndex - 1];
|
||||
|
||||
std::size_t prevLayerSize = prevLayer.size();
|
||||
std::size_t layerSize = layer.size();
|
||||
|
||||
for(std::size_t j = 1; j < layerSize; j++) {
|
||||
for(std::size_t k = 0; k < prevLayerSize; k++) {
|
||||
float delta = deltas[layerIndex][j][k]*learningCoefficient - weightDecay * layer[j].weight(k);
|
||||
|
||||
if(enableMoments) {
|
||||
delta += momentumWeight * lastDeltas[layerIndex][j][k];
|
||||
lastDeltas[layerIndex][j][k]=delta;
|
||||
}
|
||||
|
||||
layer[j].weight(k)+= delta;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user