Merge branch 'tests'
This commit is contained in:
@@ -1,14 +1,38 @@
|
||||
cmake_minimum_required(VERSION 3.2)
|
||||
|
||||
project(NeuralNetworkTests CXX)
|
||||
|
||||
set(CMAKE_CXX_FLAGS " --std=c++14")
|
||||
|
||||
add_executable(activation activation.cpp)
|
||||
target_link_libraries(activation NeuralNetwork)
|
||||
target_link_libraries(activation NeuralNetwork gtest gtest_main)
|
||||
|
||||
add_executable(basis basis.cpp)
|
||||
target_link_libraries(basis NeuralNetwork)
|
||||
target_link_libraries(basis NeuralNetwork gtest gtest_main)
|
||||
|
||||
add_executable(backpropagation backpropagation.cpp)
|
||||
target_link_libraries(backpropagation NeuralNetwork)
|
||||
target_link_libraries(backpropagation NeuralNetwork gtest gtest_main)
|
||||
|
||||
add_executable(feedforward feedforward.cpp)
|
||||
target_link_libraries(feedforward NeuralNetwork gtest gtest_main)
|
||||
|
||||
add_executable(optical_backpropagation optical_backpropagation.cpp)
|
||||
target_link_libraries(optical_backpropagation NeuralNetwork gtest gtest_main)
|
||||
|
||||
add_executable(perceptron perceptron.cpp)
|
||||
target_link_libraries(perceptron NeuralNetwork gtest gtest_main)
|
||||
|
||||
add_executable(perceptron_learning perceptron_learning.cpp)
|
||||
target_link_libraries(perceptron_learning NeuralNetwork gtest gtest_main)
|
||||
|
||||
add_executable(recurrent recurrent.cpp)
|
||||
target_link_libraries(recurrent NeuralNetwork gtest gtest_main)
|
||||
|
||||
add_executable(quickpropagation quickpropagation.cpp)
|
||||
target_link_libraries(quickpropagation NeuralNetwork gtest gtest_main)
|
||||
|
||||
|
||||
# PERF
|
||||
|
||||
add_executable(backpropagation_function_cmp backpropagation_function_cmp.cpp)
|
||||
target_link_libraries(backpropagation_function_cmp NeuralNetwork)
|
||||
@@ -16,32 +40,14 @@ target_link_libraries(backpropagation_function_cmp NeuralNetwork)
|
||||
add_executable(backpropagation_perf backpropagation_perf.cpp)
|
||||
target_link_libraries(backpropagation_perf NeuralNetwork)
|
||||
|
||||
add_executable(feedforward feedforward.cpp)
|
||||
target_link_libraries(feedforward NeuralNetwork)
|
||||
|
||||
add_executable(feedforward_perf feedforward_perf.cpp)
|
||||
target_link_libraries(feedforward_perf NeuralNetwork)
|
||||
|
||||
add_executable(optical_backpropagation optical_backpropagation.cpp)
|
||||
target_link_libraries(optical_backpropagation NeuralNetwork)
|
||||
|
||||
add_executable(perceptron perceptron.cpp)
|
||||
target_link_libraries(perceptron NeuralNetwork)
|
||||
|
||||
add_executable(perceptron_learning perceptron_learning.cpp)
|
||||
target_link_libraries(perceptron_learning NeuralNetwork)
|
||||
|
||||
add_executable(recurrent recurrent.cpp)
|
||||
target_link_libraries(recurrent NeuralNetwork)
|
||||
|
||||
add_executable(recurrent_perf recurrent_perf.cpp)
|
||||
target_link_libraries(recurrent_perf NeuralNetwork)
|
||||
|
||||
add_executable(quickpropagation quickpropagation.cpp)
|
||||
target_link_libraries(quickpropagation NeuralNetwork)
|
||||
|
||||
add_executable(quickpropagation_perf quickpropagation_perf.cpp)
|
||||
target_link_libraries(quickpropagation_perf NeuralNetwork)
|
||||
|
||||
add_executable(propagation_cmp propagation_cmp.cpp)
|
||||
target_link_libraries(propagation_cmp NeuralNetwork)
|
||||
target_link_libraries(propagation_cmp NeuralNetwork)
|
||||
|
||||
@@ -1,103 +1,106 @@
|
||||
#include <NeuralNetwork/Network.h>
|
||||
#include <NeuralNetwork/ActivationFunction/Heaviside.h>
|
||||
#include <NeuralNetwork/ActivationFunction/Sigmoid.h>
|
||||
#include <NeuralNetwork/ActivationFunction/HyperbolicTangent.h>
|
||||
#include <NeuralNetwork/ActivationFunction/Linear.h>
|
||||
|
||||
#include <NeuralNetwork/Network.h>
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include <cassert>
|
||||
|
||||
union {
|
||||
__m128 v; // SSE 4 x float vector
|
||||
float a[4]; // scalar array of 4 floats
|
||||
} U;
|
||||
union SSE {
|
||||
__m128 sse; // SSE 4 x float vector
|
||||
float floats[4]; // scalar array of 4 floats
|
||||
};
|
||||
|
||||
NEURAL_NETWORK_INIT();
|
||||
|
||||
int main() {
|
||||
{
|
||||
NeuralNetwork::ActivationFunction::Heaviside h(1.0);
|
||||
assert(h(0.2) == 0);
|
||||
assert(h(1.2) == 1);
|
||||
}
|
||||
TEST(Heaviside, ParamOne) {
|
||||
NeuralNetwork::ActivationFunction::Heaviside h(1.0);
|
||||
ASSERT_EQ(h(0.2), 0);
|
||||
ASSERT_EQ(h(1.2), 1);
|
||||
}
|
||||
|
||||
{
|
||||
NeuralNetwork::ActivationFunction::Heaviside h(0.7);
|
||||
assert(h(0.2) == 0);
|
||||
assert(h(0.8) == 1);
|
||||
}
|
||||
TEST(Heaviside, ParamZeroPointSeven) {
|
||||
NeuralNetwork::ActivationFunction::Heaviside h(0.7);
|
||||
ASSERT_EQ(h(0.2), 0);
|
||||
ASSERT_EQ(h(0.8), 1);
|
||||
}
|
||||
|
||||
{
|
||||
NeuralNetwork::ActivationFunction::Sigmoid s(0.7);
|
||||
assert(s(0.1) > 0.482407);
|
||||
assert(s(0.1) < 0.482607);
|
||||
TEST(Sigmoid, ParamZeroPointSeven) {
|
||||
NeuralNetwork::ActivationFunction::Sigmoid s(0.7);
|
||||
ASSERT_GT(s(0.1), 0.482407);
|
||||
ASSERT_LT(s(0.1), 0.482607);
|
||||
|
||||
assert(s(10) > 0.000901051);
|
||||
assert(s(10) < 0.000921051);
|
||||
}
|
||||
{
|
||||
NeuralNetwork::ActivationFunction::Sigmoid s(-5);
|
||||
assert(s(0.1) > 0.622359);
|
||||
assert(s(0.1) < 0.622559);
|
||||
|
||||
assert(s(0.7) > 0.970588);
|
||||
assert(s(0.7) < 0.970788);
|
||||
}
|
||||
{
|
||||
NeuralNetwork::ActivationFunction::Sigmoid s(-0.7);
|
||||
U.a[0]=0.1;
|
||||
U.a[1]=10;
|
||||
U.v=s(U.v);
|
||||
ASSERT_GT(s(10), 0.000901051);
|
||||
ASSERT_LT(s(10), 0.000921051);
|
||||
}
|
||||
|
||||
assert(U.a[0] > 0.517483);
|
||||
assert(U.a[0] < 0.51750);
|
||||
TEST(Sigmoid, ParamMinusFive) {
|
||||
NeuralNetwork::ActivationFunction::Sigmoid s(-5);
|
||||
ASSERT_GT(s(0.1), 0.622359);
|
||||
ASSERT_LT(s(0.1), 0.622559);
|
||||
|
||||
assert(U.a[1] > 0.998989);
|
||||
assert(U.a[1] < 0.999189);
|
||||
}
|
||||
{
|
||||
NeuralNetwork::ActivationFunction::Linear s(1.0);
|
||||
assert(s(0.5) > 0.4999);
|
||||
assert(s(0.5) < 0.5001);
|
||||
ASSERT_GT(s(0.7), 0.970588);
|
||||
ASSERT_LT(s(0.7), 0.970788);
|
||||
}
|
||||
|
||||
assert(s(0.0) == 0.0);
|
||||
}
|
||||
{
|
||||
NeuralNetwork::ActivationFunction::Linear s(0.7);
|
||||
assert(s(0.0) == 0.0);
|
||||
TEST(SigmoidSSE, ParamMinusZeroPointSeven) {
|
||||
NeuralNetwork::ActivationFunction::Sigmoid s(-0.7);
|
||||
SSE comp;
|
||||
comp.floats[0] = 0.1;
|
||||
comp.floats[1] = 10;
|
||||
comp.sse = s(comp.sse);
|
||||
|
||||
assert(s(1.0) > 0.6999);
|
||||
assert(s(1.0) < 0.7001);
|
||||
}
|
||||
ASSERT_GT(comp.floats[0], 0.517483);
|
||||
ASSERT_LT(comp.floats[0], 0.51750);
|
||||
|
||||
{
|
||||
NeuralNetwork::ActivationFunction::Linear l(2.5);
|
||||
const std::string tmp = l.serialize().serialize();
|
||||
NeuralNetwork::ActivationFunction::ActivationFunction* deserialized = NeuralNetwork::ActivationFunction::Factory::deserialize(l.serialize()).release();
|
||||
assert(tmp == deserialized->serialize().serialize());
|
||||
delete deserialized;
|
||||
}
|
||||
{
|
||||
NeuralNetwork::ActivationFunction::Heaviside l(2.5);
|
||||
const std::string tmp = l.serialize().serialize();
|
||||
NeuralNetwork::ActivationFunction::ActivationFunction* deserialized = NeuralNetwork::ActivationFunction::Factory::deserialize(l.serialize()).release();
|
||||
assert(tmp == deserialized->serialize().serialize());
|
||||
delete deserialized;
|
||||
}
|
||||
{
|
||||
NeuralNetwork::ActivationFunction::HyperbolicTangent l(2.5);
|
||||
const std::string tmp = l.serialize().serialize();
|
||||
NeuralNetwork::ActivationFunction::ActivationFunction* deserialized = NeuralNetwork::ActivationFunction::Factory::deserialize(l.serialize()).release();
|
||||
assert(tmp == deserialized->serialize().serialize());
|
||||
delete deserialized;
|
||||
}
|
||||
{
|
||||
NeuralNetwork::ActivationFunction::Sigmoid l(2.5);
|
||||
const std::string tmp = l.serialize().serialize();
|
||||
NeuralNetwork::ActivationFunction::ActivationFunction* deserialized = NeuralNetwork::ActivationFunction::Factory::deserialize(l.serialize()).release();
|
||||
assert(tmp == deserialized->serialize().serialize());
|
||||
delete deserialized;
|
||||
}
|
||||
ASSERT_GT(comp.floats[1], 0.998989);
|
||||
ASSERT_LT(comp.floats[1], 0.999189);
|
||||
}
|
||||
|
||||
return 0;
|
||||
TEST(Linear, ParamOne) {
|
||||
NeuralNetwork::ActivationFunction::Linear s(1.0);
|
||||
ASSERT_GT(s(0.5), 0.4999);
|
||||
ASSERT_LT(s(0.5), 0.5001);
|
||||
|
||||
ASSERT_EQ(s(0.0), 0.0);
|
||||
}
|
||||
|
||||
TEST(Linear, ParamZeroPointSeven) {
|
||||
NeuralNetwork::ActivationFunction::Linear s(0.7);
|
||||
ASSERT_GT(s(1.0), 0.6999);
|
||||
ASSERT_LT(s(1.0), 0.7001);
|
||||
|
||||
ASSERT_EQ(s(0.0), 0.0);
|
||||
}
|
||||
|
||||
TEST(Linear, Serialize) {
|
||||
NeuralNetwork::ActivationFunction::Linear l(2.5);
|
||||
const std::string tmp = l.serialize().serialize();
|
||||
NeuralNetwork::ActivationFunction::ActivationFunction* deserialized = NeuralNetwork::ActivationFunction::Factory::deserialize(l.serialize()).release();
|
||||
ASSERT_EQ(tmp, deserialized->serialize().serialize());
|
||||
delete deserialized;
|
||||
}
|
||||
|
||||
TEST(Heaviside, Serialize) {
|
||||
NeuralNetwork::ActivationFunction::Heaviside l(2.5);
|
||||
const std::string tmp = l.serialize().serialize();
|
||||
NeuralNetwork::ActivationFunction::ActivationFunction* deserialized = NeuralNetwork::ActivationFunction::Factory::deserialize(l.serialize()).release();
|
||||
ASSERT_EQ(tmp, deserialized->serialize().serialize());
|
||||
delete deserialized;
|
||||
}
|
||||
|
||||
TEST(HyperbolicTangent, Serialize) {
|
||||
NeuralNetwork::ActivationFunction::HyperbolicTangent l(2.5);
|
||||
const std::string tmp = l.serialize().serialize();
|
||||
NeuralNetwork::ActivationFunction::ActivationFunction* deserialized = NeuralNetwork::ActivationFunction::Factory::deserialize(l.serialize()).release();
|
||||
ASSERT_EQ(tmp, deserialized->serialize().serialize());
|
||||
delete deserialized;
|
||||
}
|
||||
|
||||
TEST(Sigmoid, Serialize) {
|
||||
NeuralNetwork::ActivationFunction::Sigmoid l(2.5);
|
||||
const std::string tmp = l.serialize().serialize();
|
||||
NeuralNetwork::ActivationFunction::ActivationFunction* deserialized = NeuralNetwork::ActivationFunction::Factory::deserialize(l.serialize()).release();
|
||||
ASSERT_EQ(tmp, deserialized->serialize().serialize());
|
||||
delete deserialized;
|
||||
}
|
||||
@@ -1,116 +1,118 @@
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
#include <NeuralNetwork/Learning/BackPropagation.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include "../include/NeuralNetwork/Learning/BackPropagation.h"
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
int main() {
|
||||
{ // XOR problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
TEST(BackProp,XOR) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::BackPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
NeuralNetwork::Learning::BackPropagation prop(n);
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
{ // AND problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::BackPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,1},{1});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{0});
|
||||
prop.teach({1,0},{0});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
{ // NOT AND problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
NeuralNetwork::Learning::BackPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{1});
|
||||
prop.teach({0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
}
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(BackProp,AND) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::BackPropagation prop(n);
|
||||
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,1},{1});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{0});
|
||||
prop.teach({1,0},{0});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(BackProp,NOTAND) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::BackPropagation prop(n);
|
||||
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{1});
|
||||
prop.teach({0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
}
|
||||
@@ -2,9 +2,9 @@
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include "../include/NeuralNetwork/Learning/BackPropagation.h"
|
||||
#include "../include/NeuralNetwork/Learning/CorrectionFunction/Optical.h"
|
||||
#include "../include/NeuralNetwork/Learning/CorrectionFunction/ArcTangent.h"
|
||||
#include <NeuralNetwork/Learning/BackPropagation.h>
|
||||
#include <NeuralNetwork/Learning/CorrectionFunction/Optical.h>
|
||||
#include <NeuralNetwork/Learning/CorrectionFunction/ArcTangent.h>
|
||||
|
||||
#define LEARN(A,AR,B,BR,C,CR,D,DR,FUN,COEF) \
|
||||
({\
|
||||
|
||||
108
tests/basis.cpp
108
tests/basis.cpp
@@ -4,67 +4,67 @@
|
||||
|
||||
#include <NeuralNetwork/Network.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <cassert>
|
||||
#include <chrono>
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
NEURAL_NETWORK_INIT();
|
||||
|
||||
int main() {
|
||||
{
|
||||
NeuralNetwork::BasisFunction::Linear l;
|
||||
assert(39.0==l({1,2,3,5},{1,2,3,5}));
|
||||
}
|
||||
{
|
||||
NeuralNetwork::BasisFunction::Linear l;
|
||||
assert(88.0==l({1,2,3,5,7},{1,2,3,5,7}));
|
||||
}
|
||||
{
|
||||
NeuralNetwork::BasisFunction::Linear l;
|
||||
std::vector<float> w;
|
||||
for(int in=0;in<100;in++) {
|
||||
w.push_back(2);
|
||||
}
|
||||
assert(400.0==l(w,w));
|
||||
}
|
||||
{
|
||||
NeuralNetwork::BasisFunction::Linear l;
|
||||
std::vector<float> w;
|
||||
for(int in=0;in<55;in++) {
|
||||
w.push_back(2);
|
||||
}
|
||||
assert(220.0==l(w,w));
|
||||
}
|
||||
{
|
||||
NeuralNetwork::BasisFunction::Product l;
|
||||
std::vector<float> w({0,0.501,1});
|
||||
std::vector<float> i({0,0.2,0.3});
|
||||
TEST(Linear,FourElements) {
|
||||
NeuralNetwork::BasisFunction::Linear l;
|
||||
ASSERT_EQ(39.0, l({1,2,3,5},{1,2,3,5}));
|
||||
}
|
||||
|
||||
assert(l(w,i) > 0.05999);
|
||||
assert(l(w,i) < 0.06001);
|
||||
}
|
||||
TEST(Linear,FiveElements) {
|
||||
NeuralNetwork::BasisFunction::Linear l;
|
||||
ASSERT_EQ(88.0, l({1,2,3,5,7},{1,2,3,5,7}));
|
||||
}
|
||||
|
||||
{
|
||||
NeuralNetwork::BasisFunction::Linear l;
|
||||
std::string tmp = l.serialize().serialize();
|
||||
NeuralNetwork::BasisFunction::BasisFunction *deserialized =NeuralNetwork::BasisFunction::Factory::deserialize(l.serialize()).release();
|
||||
assert(tmp==deserialized->serialize().serialize());
|
||||
delete deserialized;
|
||||
TEST(Linear,HundredElements) {
|
||||
NeuralNetwork::BasisFunction::Linear l;
|
||||
std::vector<float> w;
|
||||
for(int in=0;in<100;in++) {
|
||||
w.push_back(2);
|
||||
}
|
||||
ASSERT_EQ(400.0, l(w,w));
|
||||
}
|
||||
|
||||
{
|
||||
NeuralNetwork::BasisFunction::Product l;
|
||||
std::string tmp = l.serialize().serialize();
|
||||
NeuralNetwork::BasisFunction::BasisFunction *deserialized =NeuralNetwork::BasisFunction::Factory::deserialize(l.serialize()).release();
|
||||
assert(tmp==deserialized->serialize().serialize());
|
||||
delete deserialized;
|
||||
TEST(Linear,FivetyFiveElements) {
|
||||
NeuralNetwork::BasisFunction::Linear l;
|
||||
std::vector<float> w;
|
||||
for(int in = 0; in < 55; in++) {
|
||||
w.push_back(2);
|
||||
}
|
||||
ASSERT_EQ(220.0, l(w, w));
|
||||
}
|
||||
|
||||
{
|
||||
NeuralNetwork::BasisFunction::Radial l;
|
||||
std::string tmp = l.serialize().serialize();
|
||||
NeuralNetwork::BasisFunction::BasisFunction *deserialized =NeuralNetwork::BasisFunction::Factory::deserialize(l.serialize()).release();
|
||||
assert(tmp==deserialized->serialize().serialize());
|
||||
delete deserialized;
|
||||
}
|
||||
TEST(Product,Product) {
|
||||
NeuralNetwork::BasisFunction::Product p;
|
||||
std::vector<float> w({0,0.501,1});
|
||||
std::vector<float> i({0,0.2,0.3});
|
||||
|
||||
ASSERT_GT(p(w,i), 0.05999);
|
||||
ASSERT_LT(p(w,i), 0.06001);
|
||||
}
|
||||
|
||||
TEST(Linear, Serialize) {
|
||||
NeuralNetwork::BasisFunction::Linear l;
|
||||
std::string tmp = l.serialize().serialize();
|
||||
NeuralNetwork::BasisFunction::BasisFunction *deserialized =NeuralNetwork::BasisFunction::Factory::deserialize(l.serialize()).release();
|
||||
ASSERT_EQ(tmp, deserialized->serialize().serialize());
|
||||
delete deserialized;
|
||||
}
|
||||
|
||||
TEST(Product, Serialize) {
|
||||
NeuralNetwork::BasisFunction::Product l;
|
||||
std::string tmp = l.serialize().serialize();
|
||||
NeuralNetwork::BasisFunction::BasisFunction *deserialized =NeuralNetwork::BasisFunction::Factory::deserialize(l.serialize()).release();
|
||||
ASSERT_EQ(tmp, deserialized->serialize().serialize());
|
||||
delete deserialized;
|
||||
}
|
||||
|
||||
TEST(Radial, Serialize) {
|
||||
NeuralNetwork::BasisFunction::Radial l;
|
||||
std::string tmp = l.serialize().serialize();
|
||||
NeuralNetwork::BasisFunction::BasisFunction *deserialized =NeuralNetwork::BasisFunction::Factory::deserialize(l.serialize()).release();
|
||||
ASSERT_EQ(tmp, deserialized->serialize().serialize());
|
||||
delete deserialized;
|
||||
}
|
||||
@@ -1,73 +1,87 @@
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
int main() {
|
||||
std::string serialized;
|
||||
{ // XOR problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
NeuralNetwork::FeedForward::Layer &hidden=n.appendLayer(2,a);
|
||||
NeuralNetwork::FeedForward::Layer &out = n.appendLayer(1,a);
|
||||
TEST(FeedForward, XOR) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
NeuralNetwork::FeedForward::Layer &hidden=n.appendLayer(2,a);
|
||||
NeuralNetwork::FeedForward::Layer &out = n.appendLayer(1,a);
|
||||
|
||||
hidden[1].weight(n[0][0])=7;
|
||||
hidden[1].weight(n[0][1])=-4.7;
|
||||
hidden[1].weight(n[0][2])=-4.7;
|
||||
hidden[1].weight(n[0][0])=7;
|
||||
hidden[1].weight(n[0][1])=-4.7;
|
||||
hidden[1].weight(n[0][2])=-4.7;
|
||||
|
||||
hidden[2].weight(n[0][0])=2.6;
|
||||
hidden[2].weight(n[0][1])=-6.4;
|
||||
hidden[2].weight(n[0][2])=-6.4;
|
||||
hidden[2].weight(n[0][0])=2.6;
|
||||
hidden[2].weight(n[0][1])=-6.4;
|
||||
hidden[2].weight(n[0][2])=-6.4;
|
||||
|
||||
out[1].weight(hidden[0])=-4.5;
|
||||
out[1].weight(hidden[1])=9.6;
|
||||
out[1].weight(hidden[2])=-6.8;
|
||||
out[1].weight(hidden[0])=-4.5;
|
||||
out[1].weight(hidden[1])=9.6;
|
||||
out[1].weight(hidden[2])=-6.8;
|
||||
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
assert(ret[0] < 0.5);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
assert(ret[0] > 0.5);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
assert(ret[0] > 0.5);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
assert(ret[0] < 0.5);
|
||||
}
|
||||
serialized = n.serialize().serialize();
|
||||
}
|
||||
{
|
||||
NeuralNetwork::FeedForward::Network *deserialized=NeuralNetwork::FeedForward::Network::Factory::deserialize(serialized).release();
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_LT(ret[0], 0.5);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =deserialized->computeOutput({1,1});
|
||||
assert(ret[0] < 0.5);
|
||||
}
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_GT(ret[0], 0.5);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =deserialized->computeOutput({0,1});
|
||||
assert(ret[0] > 0.5);
|
||||
}
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_GT(ret[0], 0.5);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =deserialized->computeOutput({1,0});
|
||||
assert(ret[0] > 0.5);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =deserialized->computeOutput({0,0});
|
||||
assert(ret[0] < 0.5);
|
||||
}
|
||||
delete deserialized;
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_LT(ret[0], 0.5);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(FeedForward, Serialization) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
NeuralNetwork::FeedForward::Layer &hidden=n.appendLayer(2,a);
|
||||
NeuralNetwork::FeedForward::Layer &out = n.appendLayer(1,a);
|
||||
|
||||
hidden[1].weight(n[0][0])=7;
|
||||
hidden[1].weight(n[0][1])=-4.7;
|
||||
hidden[1].weight(n[0][2])=-4.7;
|
||||
|
||||
hidden[2].weight(n[0][0])=2.6;
|
||||
hidden[2].weight(n[0][1])=-6.4;
|
||||
hidden[2].weight(n[0][2])=-6.4;
|
||||
|
||||
out[1].weight(hidden[0])=-4.5;
|
||||
out[1].weight(hidden[1])=9.6;
|
||||
out[1].weight(hidden[2])=-6.8;
|
||||
std::string serialized = n.serialize().serialize();
|
||||
|
||||
NeuralNetwork::FeedForward::Network *deserialized=NeuralNetwork::FeedForward::Network::Factory::deserialize(serialized).release();
|
||||
|
||||
{
|
||||
std::vector<float> ret =deserialized->computeOutput({1,1});
|
||||
ASSERT_LT(ret[0], 0.5);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =deserialized->computeOutput({0,1});
|
||||
ASSERT_GT(ret[0], 0.5);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =deserialized->computeOutput({1,0});
|
||||
ASSERT_GT(ret[0], 0.5);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =deserialized->computeOutput({0,0});
|
||||
ASSERT_LT(ret[0], 0.5);
|
||||
}
|
||||
|
||||
delete deserialized;
|
||||
}
|
||||
@@ -1,116 +1,120 @@
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include "../include/NeuralNetwork/Learning/OpticalBackPropagation.h"
|
||||
#include <NeuralNetwork/Learning/OpticalBackPropagation.h>
|
||||
|
||||
int main() {
|
||||
{ // XOR problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
TEST(OpticalBackPropagation,XOR) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
n.randomizeWeights();
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop(n);
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
{ // AND problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,1},{1});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{0});
|
||||
prop.teach({1,0},{0});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
{ // NOT AND problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{1});
|
||||
prop.teach({0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
}
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(OpticalBackPropagation,AND) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop(n);
|
||||
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,1},{1});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{0});
|
||||
prop.teach({1,0},{0});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(OpticalBackPropagation,NOTAND) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop(n);
|
||||
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{1});
|
||||
prop.teach({0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
}
|
||||
@@ -1,16 +1,17 @@
|
||||
#include <NeuralNetwork/FeedForward/Perceptron.h>
|
||||
|
||||
#include <assert.h>
|
||||
#include <iostream>
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
int main() {
|
||||
TEST(Perceptron,Test) {
|
||||
NeuralNetwork::FeedForward::Perceptron p(2,1);
|
||||
|
||||
p[1].weight(0)=-1.0;
|
||||
p[1].weight(1)=1.001;
|
||||
|
||||
assert(p.computeOutput({1,1})[0] == 1.0);
|
||||
p[1].weight(1)=0.999;
|
||||
float ret =p.computeOutput({1,1})[0];
|
||||
ASSERT_EQ(ret, 1.0);
|
||||
|
||||
assert(p.computeOutput({1,1})[0] == 0.0);
|
||||
p[1].weight(1)=0.999;
|
||||
ret =p.computeOutput({1,1})[0];
|
||||
ASSERT_EQ(ret, 0.0);
|
||||
}
|
||||
@@ -1,41 +1,39 @@
|
||||
#include <NeuralNetwork/Learning/PerceptronLearning.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
int main() {
|
||||
{ // XOR problem
|
||||
NeuralNetwork::FeedForward::Perceptron n(2,1);
|
||||
|
||||
n.randomizeWeights();
|
||||
TEST(PerceptronLearning,XOR) {
|
||||
NeuralNetwork::FeedForward::Perceptron n(2,1);
|
||||
|
||||
NeuralNetwork::Learning::PerceptronLearning learn(n);
|
||||
n.randomizeWeights();
|
||||
|
||||
for(int i=0;i<10;i++) {
|
||||
learn.teach({1,0},{1});
|
||||
learn.teach({1,1},{1});
|
||||
learn.teach({0,0},{0});
|
||||
learn.teach({0,1},{1});
|
||||
}
|
||||
NeuralNetwork::Learning::PerceptronLearning learn(n);
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
for(int i=0;i<10;i++) {
|
||||
learn.teach({1,0},{1});
|
||||
learn.teach({1,1},{1});
|
||||
learn.teach({0,0},{0});
|
||||
learn.teach({0,1},{1});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,116 +1,118 @@
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
#include <NeuralNetwork/Learning/QuickPropagation.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include "../include/NeuralNetwork/Learning/QuickPropagation.h"
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
int main() {
|
||||
{ // XOR problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
TEST(QuickPropagation,XOR) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::QuickPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
NeuralNetwork::Learning::QuickPropagation prop(n);
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
{ // AND problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::QuickPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,1},{1});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{0});
|
||||
prop.teach({1,0},{0});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
{ // NOT AND problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
NeuralNetwork::Learning::QuickPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{1});
|
||||
prop.teach({0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
}
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(QuickPropagation,AND) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::QuickPropagation prop(n);
|
||||
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,1},{1});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{0});
|
||||
prop.teach({1,0},{0});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(QuickPropagation,NOTAND) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::QuickPropagation prop(n);
|
||||
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{1});
|
||||
prop.teach({0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
}
|
||||
@@ -1,9 +1,8 @@
|
||||
#include <NeuralNetwork/Recurrent/Network.h>
|
||||
|
||||
#include <assert.h>
|
||||
#include <iostream>
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
int main() {
|
||||
TEST(Recurrent, Sample) {
|
||||
NeuralNetwork::Recurrent::Network a(2,1,1);
|
||||
|
||||
a.getNeurons()[4]->weight(1)=0.05;
|
||||
@@ -15,7 +14,7 @@ int main() {
|
||||
|
||||
for(size_t i=0;i<solutions.size();i++) {
|
||||
float res= a.computeOutput({1,0.7})[0];
|
||||
assert(res > solutions[i]*0.999 && res < solutions[i]*1.001);
|
||||
ASSERT_FLOAT_EQ(res, solutions[i]);
|
||||
}
|
||||
|
||||
std::string str = a.stringify();
|
||||
|
||||
Reference in New Issue
Block a user