moved Linear sintrigification to .cpp file and fixed err in neuron weights
This commit is contained in:
69
src/NeuralNetwork/BasisFunction/Linear.cpp
Normal file
69
src/NeuralNetwork/BasisFunction/Linear.cpp
Normal file
@@ -0,0 +1,69 @@
|
||||
#include <NeuralNetwork/BasisFunction/Linear.h>
|
||||
|
||||
float NeuralNetwork::BasisFunction::Linear::operator()(const std::vector<float> &weights, const std::vector<float> &input) const {
|
||||
assert(input.size()== weights.size());
|
||||
std::size_t inputSize=input.size();
|
||||
|
||||
#ifdef USE_AVX
|
||||
|
||||
std::size_t alignedPrev=inputSize-inputSize%8;
|
||||
|
||||
const float* weightsData=weights.data();
|
||||
const float* inputData=input.data();
|
||||
|
||||
union {
|
||||
__m256 avx;
|
||||
float f[8];
|
||||
} partialSolution;
|
||||
|
||||
partialSolution.avx=_mm256_setzero_ps();
|
||||
|
||||
for(size_t k=0;k<alignedPrev;k+=8) {
|
||||
//TODO: asignement!! -- possible speedup
|
||||
partialSolution.avx=_mm256_add_ps(partialSolution.avx,_mm256_mul_ps(_mm256_loadu_ps(weightsData+k),_mm256_loadu_ps(inputData+k)));
|
||||
}
|
||||
|
||||
for(size_t k=alignedPrev;k<inputSize;k++) {
|
||||
partialSolution.avx=_mm256_add_ps(partialSolution.avx,_mm256_mul_ps(_mm256_set_ps(weightsData[k],0,0,0,0,0,0,0),_mm256_set_ps(inputData[k],0,0,0,0,0,0,0)));
|
||||
}
|
||||
|
||||
partialSolution.avx = _mm256_add_ps(partialSolution.avx, _mm256_permute2f128_ps(partialSolution.avx , partialSolution.avx , 1));
|
||||
partialSolution.avx = _mm256_hadd_ps(partialSolution.avx, partialSolution.avx);
|
||||
partialSolution.avx = _mm256_hadd_ps(partialSolution.avx, partialSolution.avx);
|
||||
|
||||
return partialSolution.f[0];
|
||||
#elif USE_SSE
|
||||
|
||||
std::size_t alignedPrev=inputSize-inputSize%4;
|
||||
|
||||
const float* weightsData=weights.data();
|
||||
const float* inputData=input.data();
|
||||
vec4f partialSolution;
|
||||
partialSolution.sse =_mm_setzero_ps();
|
||||
|
||||
//TODO prefetch ??
|
||||
for(register size_t k=0;k<alignedPrev;k+=4) {
|
||||
partialSolution.sse=_mm_add_ps(partialSolution.sse,_mm_mul_ps(_mm_load_ps(weightsData+k),_mm_load_ps(inputData+k)));
|
||||
}
|
||||
|
||||
for(register size_t k=alignedPrev;k<inputSize;k++) {
|
||||
partialSolution.sse=_mm_add_ps(partialSolution.sse,_mm_mul_ps(_mm_load_ss(weightsData+k),_mm_load_ss(inputData+k)));
|
||||
}
|
||||
|
||||
#ifdef USE_SSE2 //pre-SSE3 solution
|
||||
partialSolution.sse= _mm_add_ps(_mm_movehl_ps(partialSolution.sse, partialSolution.sse), partialSolution.sse);
|
||||
partialSolution.sse=_mm_add_ss(partialSolution.sse, _mm_shuffle_ps(partialSolution.sse,partialSolution.sse, 1));
|
||||
#else
|
||||
partialSolution.sse = _mm_hadd_ps(partialSolution.sse, partialSolution.sse);
|
||||
partialSolution.sse = _mm_hadd_ps(partialSolution.sse, partialSolution.sse);
|
||||
#endif
|
||||
return partialSolution.f[0];
|
||||
#else
|
||||
|
||||
register float tmp = 0;
|
||||
for(size_t k=0;k<inputSize;k++) {
|
||||
tmp+=input[k]*weights[k];
|
||||
}
|
||||
return tmp;
|
||||
#endif
|
||||
}
|
||||
@@ -7,4 +7,19 @@ void NeuralNetwork::FeedForward::Layer::solve(const std::vector<float> &input, s
|
||||
output[neuron->id()]=neuron->operator()(input);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void NeuralNetwork::FeedForward::Layer::stringify(std::ostream &out) const {
|
||||
out << "{" << std::endl;
|
||||
out << "\t \"class\": \"NeuralNetwork::FeedForward::Layer\"," << std::endl;
|
||||
out << "\t \"neurons\": [" << std::endl;
|
||||
bool first=true;
|
||||
for(auto &neuron: neurons) {
|
||||
if(!first)
|
||||
out << ", ";
|
||||
out << neuron->stringify();
|
||||
first=false;
|
||||
}
|
||||
out << "]";
|
||||
out << "}";
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user