refactored propagation
This commit is contained in:
@@ -1,10 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
#include "CorrectionFunction/Linear.h"
|
||||
#include "BatchPropagation.h"
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace Learning {
|
||||
@@ -12,23 +8,17 @@ namespace Learning {
|
||||
/** @class BackPropagation
|
||||
* @brief
|
||||
*/
|
||||
class BackPropagation {
|
||||
class BackPropagation : public BatchPropagation {
|
||||
|
||||
public:
|
||||
inline BackPropagation(FeedForward::Network &feedForwardNetwork, CorrectionFunction::CorrectionFunction *correction = new CorrectionFunction::Linear()):
|
||||
network(feedForwardNetwork), correctionFunction(correction),learningCoefficient(0.4), slopes() {
|
||||
BackPropagation(FeedForward::Network &feedForwardNetwork, std::shared_ptr<CorrectionFunction::CorrectionFunction> correction = std::make_shared<CorrectionFunction::Linear>()):
|
||||
BatchPropagation(feedForwardNetwork,correction), learningCoefficient(0.4) {
|
||||
resize();
|
||||
}
|
||||
|
||||
virtual ~BackPropagation() {
|
||||
delete correctionFunction;
|
||||
}
|
||||
|
||||
BackPropagation(const BackPropagation&)=delete;
|
||||
BackPropagation& operator=(const NeuralNetwork::Learning::BackPropagation&) = delete;
|
||||
|
||||
void teach(const std::vector<float> &input, const std::vector<float> &output);
|
||||
|
||||
inline virtual void setLearningCoefficient (const float& coefficient) { learningCoefficient=coefficient; }
|
||||
|
||||
float getMomentumWeight() const {
|
||||
@@ -48,75 +38,22 @@ namespace Learning {
|
||||
weightDecay=wd;
|
||||
}
|
||||
|
||||
std::size_t getBatchSize() const {
|
||||
return batchSize;
|
||||
}
|
||||
|
||||
void setBatchSize(std::size_t size) {
|
||||
batchSize = size;
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
virtual inline void resize() {
|
||||
if(slopes.size()!=network.size())
|
||||
slopes.resize(network.size());
|
||||
|
||||
for(std::size_t i=0; i < network.size(); i++) {
|
||||
if(slopes[i].size()!=network[i].size())
|
||||
slopes[i].resize(network[i].size());
|
||||
}
|
||||
|
||||
if(deltas.size() != network.size())
|
||||
deltas.resize(network.size());
|
||||
|
||||
bool resized = false;
|
||||
|
||||
for(std::size_t i = 0; i < network.size(); i++) {
|
||||
if(deltas[i].size() != network[i].size()) {
|
||||
deltas[i].resize(network[i].size());
|
||||
resized = true;
|
||||
|
||||
if(i > 0) {
|
||||
for(std::size_t j = 0; j < deltas[i].size(); j++) {
|
||||
deltas[i][j].resize(network[i - 1].size());
|
||||
std::fill(deltas[i][j].begin(),deltas[i][j].end(),0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(momentumWeight > 0.0 && (resized || lastDeltas.size() != deltas.size())) {
|
||||
lastDeltas = deltas;
|
||||
virtual inline void resize() override {
|
||||
BatchPropagation::resize();
|
||||
if(momentumWeight > 0.0) {
|
||||
_lastDeltas = _gradients;
|
||||
}
|
||||
}
|
||||
|
||||
virtual void computeDeltas(const std::vector<float> &input);
|
||||
|
||||
void updateWeights();
|
||||
|
||||
virtual void computeSlopes(const std::vector<float> &expectation);
|
||||
|
||||
virtual void endBatch() {
|
||||
|
||||
}
|
||||
|
||||
FeedForward::Network &network;
|
||||
|
||||
CorrectionFunction::CorrectionFunction *correctionFunction;
|
||||
virtual void updateWeightsAndEndBatch() override;
|
||||
|
||||
float learningCoefficient;
|
||||
|
||||
float momentumWeight = 0.0;
|
||||
|
||||
float weightDecay = 0.0;
|
||||
|
||||
std::size_t batchSize = 1;
|
||||
std::size_t currentBatchSize = 0;
|
||||
|
||||
std::vector<std::vector<float>> slopes;
|
||||
std::vector<std::vector<std::vector<float>>> deltas = {};
|
||||
std::vector<std::vector<std::vector<float>>> lastDeltas = {};
|
||||
std::vector<std::vector<std::vector<float>>> _lastDeltas = {};
|
||||
|
||||
};
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user