Rprop implementation
This commit is contained in:
103
src/NeuralNetwork/Learning/RProp.cpp
Normal file
103
src/NeuralNetwork/Learning/RProp.cpp
Normal file
@@ -0,0 +1,103 @@
|
||||
#include <NeuralNetwork/Learning/RProp.h>
|
||||
|
||||
void NeuralNetwork::Learning::RProp::teach(const std::vector<float> &input, const std::vector<float> &expectation) {
|
||||
network.computeOutput(input);
|
||||
resize();
|
||||
computeSlopes(expectation);
|
||||
|
||||
computeDeltas(input);
|
||||
if(++currentBatchSize >= batchSize) {
|
||||
updateWeights();
|
||||
endBatch();
|
||||
currentBatchSize=0;
|
||||
}
|
||||
}
|
||||
|
||||
void NeuralNetwork::Learning::RProp::computeSlopes(const std::vector<float> &expectation) {
|
||||
auto& outputLayer=network[network.size()-1];
|
||||
for(std::size_t j=1;j<outputLayer.size();j++) {
|
||||
auto& neuron = outputLayer[j];
|
||||
slopes[network.size()-1][j]=correctionFunction->operator()( expectation[j-1], neuron.output())*
|
||||
neuron.getActivationFunction().derivatedOutput(neuron.value(),neuron.output());
|
||||
}
|
||||
|
||||
for(int layerIndex=static_cast<int>(network.size()-2);layerIndex>0;layerIndex--) {
|
||||
auto &layer=network[layerIndex];
|
||||
|
||||
for(std::size_t j=1;j<layer.size();j++) {
|
||||
float deltasWeight = 0;
|
||||
|
||||
for(std::size_t k=1;k<network[layerIndex+1].size();k++) {
|
||||
deltasWeight+=slopes[layerIndex+1][k]* network[layerIndex+1][k].weight(j);
|
||||
}
|
||||
|
||||
slopes[layerIndex][j]=deltasWeight*layer[j].getActivationFunction().derivatedOutput(layer[j].value(),layer[j].output());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void NeuralNetwork::Learning::RProp::computeDeltas(const std::vector<float> &input) {
|
||||
for(std::size_t layerIndex=1;layerIndex<network.size();layerIndex++) {
|
||||
auto &layer=network[layerIndex];
|
||||
auto &prevLayer=network[layerIndex-1];
|
||||
|
||||
std::size_t prevLayerSize=prevLayer.size();
|
||||
std::size_t layerSize=layer.size();
|
||||
|
||||
for(std::size_t j=1;j<layerSize;j++) {
|
||||
float update = slopes[layerIndex][j];
|
||||
for(std::size_t k=0;k<prevLayerSize;k++) {
|
||||
float inputValue = 0.0;
|
||||
if(layerIndex==1 && k!=0) {
|
||||
inputValue = input[k-1];
|
||||
} else {
|
||||
inputValue= prevLayer[k].output();
|
||||
}
|
||||
if(currentBatchSize == 0) {
|
||||
gradients[layerIndex][j][k] = update * inputValue;
|
||||
} else {
|
||||
gradients[layerIndex][j][k] += update * inputValue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void NeuralNetwork::Learning::RProp::updateWeights() {
|
||||
|
||||
for(std::size_t layerIndex=1;layerIndex<network.size();layerIndex++) {
|
||||
auto &layer = network[layerIndex];
|
||||
auto &prevLayer = network[layerIndex - 1];
|
||||
|
||||
std::size_t prevLayerSize = prevLayer.size();
|
||||
std::size_t layerSize = layer.size();
|
||||
|
||||
for(std::size_t j = 1; j < layerSize; j++) {
|
||||
for(std::size_t k = 0; k < prevLayerSize; k++) {
|
||||
float gradient = gradients[layerIndex][j][k];
|
||||
float lastGradient = lastGradients[layerIndex][j][k];
|
||||
|
||||
lastGradients[layerIndex][j][k] = gradient;
|
||||
|
||||
float weightChangeDelta = lastWeightChanges[layerIndex][j][k];
|
||||
|
||||
if(gradient * lastGradient > 0) {
|
||||
weightChangeDelta = std::min(weightChangeDelta*weightChangePlus,maxChangeOfWeights);
|
||||
} else if (gradient * lastGradient < 0) {
|
||||
weightChangeDelta = std::max(weightChangeDelta*weightChangeMinus,minChangeOfWeights);
|
||||
} else {
|
||||
weightChangeDelta = lastWeightChanges[layerIndex][j][k];
|
||||
}
|
||||
|
||||
lastWeightChanges[layerIndex][j][k] = weightChangeDelta;
|
||||
|
||||
if(gradient > 0) {
|
||||
layer[j].weight(k) += weightChangeDelta;
|
||||
} else if (gradient < 0){
|
||||
layer[j].weight(k) -= weightChangeDelta;
|
||||
} else {
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user