Rprop implementation
This commit is contained in:
@@ -64,6 +64,7 @@ set (LIBRARY_SOURCES
|
||||
src/NeuralNetwork/Learning/BackPropagation.cpp
|
||||
src/NeuralNetwork/Learning/QuickPropagation.cpp
|
||||
src/NeuralNetwork/Learning/PerceptronLearning.cpp
|
||||
src/NeuralNetwork/Learning/RProp.cpp
|
||||
|
||||
src/NeuralNetwork/ConstructiveAlgorithms/CascadeCorrelation.cpp
|
||||
src/NeuralNetwork/ConstructiveAlgorithms/Cascade2.cpp
|
||||
@@ -118,6 +119,9 @@ IF(ENABLE_TESTS)
|
||||
add_test(quickpropagation tests/quickpropagation)
|
||||
set_property(TEST quickpropagation PROPERTY LABELS unit)
|
||||
|
||||
add_test(rprop tests/rprop)
|
||||
set_property(TEST rprop PROPERTY LABELS unit)
|
||||
|
||||
add_test(recurrent tests/recurrent)
|
||||
set_property(TEST recurrent PROPERTY LABELS unit)
|
||||
|
||||
@@ -136,8 +140,5 @@ IF(ENABLE_TESTS)
|
||||
add_test(recurrent_perf tests/recurrent_perf)
|
||||
set_property(TEST recurrent_perf PROPERTY LABELS perf)
|
||||
|
||||
add_test(genetic_programing tests/genetic_programing)
|
||||
set_property(TEST genetic_programing PROPERTY LABELS unit)
|
||||
|
||||
ENDIF(ENABLE_TESTS)
|
||||
|
||||
|
||||
140
include/NeuralNetwork/Learning/RProp.h
Normal file
140
include/NeuralNetwork/Learning/RProp.h
Normal file
@@ -0,0 +1,140 @@
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
#include "CorrectionFunction/Linear.h"
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace Learning {
|
||||
|
||||
/** @class Resilient Propagation
|
||||
* @brief
|
||||
*/
|
||||
class RProp {
|
||||
|
||||
public:
|
||||
RProp(FeedForward::Network &feedForwardNetwork, CorrectionFunction::CorrectionFunction *correction = new CorrectionFunction::Linear()):
|
||||
network(feedForwardNetwork), correctionFunction(correction) {
|
||||
resize();
|
||||
}
|
||||
|
||||
virtual ~RProp() {
|
||||
delete correctionFunction;
|
||||
}
|
||||
|
||||
RProp(const RProp&)=delete;
|
||||
RProp& operator=(const NeuralNetwork::Learning::RProp&) = delete;
|
||||
|
||||
void teach(const std::vector<float> &input, const std::vector<float> &output);
|
||||
|
||||
std::size_t getBatchSize() const {
|
||||
return batchSize;
|
||||
}
|
||||
|
||||
void setBatchSize(std::size_t size) {
|
||||
batchSize = size;
|
||||
}
|
||||
|
||||
void setInitialWeightChange(float init) {
|
||||
initialWeightChange=init;
|
||||
}
|
||||
protected:
|
||||
|
||||
virtual inline void resize() {
|
||||
if(slopes.size()!=network.size())
|
||||
slopes.resize(network.size());
|
||||
|
||||
for(std::size_t i=0; i < network.size(); i++) {
|
||||
if(slopes[i].size()!=network[i].size())
|
||||
slopes[i].resize(network[i].size());
|
||||
}
|
||||
|
||||
if(gradients.size() != network.size())
|
||||
gradients.resize(network.size());
|
||||
|
||||
bool resized = false;
|
||||
|
||||
for(std::size_t i = 0; i < network.size(); i++) {
|
||||
if(gradients[i].size() != network[i].size()) {
|
||||
gradients[i].resize(network[i].size());
|
||||
resized = true;
|
||||
|
||||
if(i > 0) {
|
||||
for(std::size_t j = 0; j < gradients[i].size(); j++) {
|
||||
gradients[i][j].resize(network[i - 1].size());
|
||||
std::fill(gradients[i][j].begin(),gradients[i][j].end(),0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(resized) {
|
||||
lastGradients = gradients;
|
||||
|
||||
if(changesOfWeightChanges.size() != network.size())
|
||||
changesOfWeightChanges.resize(network.size());
|
||||
|
||||
for(std::size_t i = 0; i < network.size(); i++) {
|
||||
if(changesOfWeightChanges[i].size() != network[i].size()) {
|
||||
changesOfWeightChanges[i].resize(network[i].size());
|
||||
if(i > 0) {
|
||||
for(std::size_t j = 0; j < changesOfWeightChanges[i].size(); j++) {
|
||||
changesOfWeightChanges[i][j].resize(network[i - 1].size());
|
||||
std::fill(changesOfWeightChanges[i][j].begin(),changesOfWeightChanges[i][j].end(),initialWeightChange);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(resized) {
|
||||
if(lastWeightChanges.size() != network.size())
|
||||
lastWeightChanges.resize(network.size());
|
||||
|
||||
for(std::size_t i = 0; i < network.size(); i++) {
|
||||
if(lastWeightChanges[i].size() != network[i].size()) {
|
||||
lastWeightChanges[i].resize(network[i].size());
|
||||
if(i > 0) {
|
||||
for(std::size_t j = 0; j < lastWeightChanges[i].size(); j++) {
|
||||
lastWeightChanges[i][j].resize(network[i - 1].size());
|
||||
std::fill(lastWeightChanges[i][j].begin(),lastWeightChanges[i][j].end(),0.1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
virtual void computeSlopes(const std::vector<float> &expectation);
|
||||
virtual void computeDeltas(const std::vector<float> &input);
|
||||
|
||||
void updateWeights();
|
||||
|
||||
virtual void endBatch() {
|
||||
|
||||
}
|
||||
|
||||
FeedForward::Network &network;
|
||||
|
||||
CorrectionFunction::CorrectionFunction *correctionFunction;
|
||||
|
||||
std::vector<std::vector<float>> slopes;
|
||||
std::vector<std::vector<std::vector<float>>> gradients = {};
|
||||
std::vector<std::vector<std::vector<float>>> lastGradients = {};
|
||||
std::vector<std::vector<std::vector<float>>> lastWeightChanges = {};
|
||||
std::vector<std::vector<std::vector<float>>> changesOfWeightChanges = {};
|
||||
|
||||
std::size_t batchSize = 1;
|
||||
std::size_t currentBatchSize = 0;
|
||||
|
||||
float maxChangeOfWeights = 50;
|
||||
float minChangeOfWeights = 0.0001;
|
||||
|
||||
float initialWeightChange=0.02;
|
||||
float weightChangePlus=1.2;
|
||||
float weightChangeMinus=0.5;
|
||||
};
|
||||
}
|
||||
}
|
||||
103
src/NeuralNetwork/Learning/RProp.cpp
Normal file
103
src/NeuralNetwork/Learning/RProp.cpp
Normal file
@@ -0,0 +1,103 @@
|
||||
#include <NeuralNetwork/Learning/RProp.h>
|
||||
|
||||
void NeuralNetwork::Learning::RProp::teach(const std::vector<float> &input, const std::vector<float> &expectation) {
|
||||
network.computeOutput(input);
|
||||
resize();
|
||||
computeSlopes(expectation);
|
||||
|
||||
computeDeltas(input);
|
||||
if(++currentBatchSize >= batchSize) {
|
||||
updateWeights();
|
||||
endBatch();
|
||||
currentBatchSize=0;
|
||||
}
|
||||
}
|
||||
|
||||
void NeuralNetwork::Learning::RProp::computeSlopes(const std::vector<float> &expectation) {
|
||||
auto& outputLayer=network[network.size()-1];
|
||||
for(std::size_t j=1;j<outputLayer.size();j++) {
|
||||
auto& neuron = outputLayer[j];
|
||||
slopes[network.size()-1][j]=correctionFunction->operator()( expectation[j-1], neuron.output())*
|
||||
neuron.getActivationFunction().derivatedOutput(neuron.value(),neuron.output());
|
||||
}
|
||||
|
||||
for(int layerIndex=static_cast<int>(network.size()-2);layerIndex>0;layerIndex--) {
|
||||
auto &layer=network[layerIndex];
|
||||
|
||||
for(std::size_t j=1;j<layer.size();j++) {
|
||||
float deltasWeight = 0;
|
||||
|
||||
for(std::size_t k=1;k<network[layerIndex+1].size();k++) {
|
||||
deltasWeight+=slopes[layerIndex+1][k]* network[layerIndex+1][k].weight(j);
|
||||
}
|
||||
|
||||
slopes[layerIndex][j]=deltasWeight*layer[j].getActivationFunction().derivatedOutput(layer[j].value(),layer[j].output());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void NeuralNetwork::Learning::RProp::computeDeltas(const std::vector<float> &input) {
|
||||
for(std::size_t layerIndex=1;layerIndex<network.size();layerIndex++) {
|
||||
auto &layer=network[layerIndex];
|
||||
auto &prevLayer=network[layerIndex-1];
|
||||
|
||||
std::size_t prevLayerSize=prevLayer.size();
|
||||
std::size_t layerSize=layer.size();
|
||||
|
||||
for(std::size_t j=1;j<layerSize;j++) {
|
||||
float update = slopes[layerIndex][j];
|
||||
for(std::size_t k=0;k<prevLayerSize;k++) {
|
||||
float inputValue = 0.0;
|
||||
if(layerIndex==1 && k!=0) {
|
||||
inputValue = input[k-1];
|
||||
} else {
|
||||
inputValue= prevLayer[k].output();
|
||||
}
|
||||
if(currentBatchSize == 0) {
|
||||
gradients[layerIndex][j][k] = update * inputValue;
|
||||
} else {
|
||||
gradients[layerIndex][j][k] += update * inputValue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void NeuralNetwork::Learning::RProp::updateWeights() {
|
||||
|
||||
for(std::size_t layerIndex=1;layerIndex<network.size();layerIndex++) {
|
||||
auto &layer = network[layerIndex];
|
||||
auto &prevLayer = network[layerIndex - 1];
|
||||
|
||||
std::size_t prevLayerSize = prevLayer.size();
|
||||
std::size_t layerSize = layer.size();
|
||||
|
||||
for(std::size_t j = 1; j < layerSize; j++) {
|
||||
for(std::size_t k = 0; k < prevLayerSize; k++) {
|
||||
float gradient = gradients[layerIndex][j][k];
|
||||
float lastGradient = lastGradients[layerIndex][j][k];
|
||||
|
||||
lastGradients[layerIndex][j][k] = gradient;
|
||||
|
||||
float weightChangeDelta = lastWeightChanges[layerIndex][j][k];
|
||||
|
||||
if(gradient * lastGradient > 0) {
|
||||
weightChangeDelta = std::min(weightChangeDelta*weightChangePlus,maxChangeOfWeights);
|
||||
} else if (gradient * lastGradient < 0) {
|
||||
weightChangeDelta = std::max(weightChangeDelta*weightChangeMinus,minChangeOfWeights);
|
||||
} else {
|
||||
weightChangeDelta = lastWeightChanges[layerIndex][j][k];
|
||||
}
|
||||
|
||||
lastWeightChanges[layerIndex][j][k] = weightChangeDelta;
|
||||
|
||||
if(gradient > 0) {
|
||||
layer[j].weight(k) += weightChangeDelta;
|
||||
} else if (gradient < 0){
|
||||
layer[j].weight(k) -= weightChangeDelta;
|
||||
} else {
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -28,6 +28,9 @@ target_link_libraries(recurrent NeuralNetwork gtest gtest_main)
|
||||
add_executable(quickpropagation quickpropagation.cpp)
|
||||
target_link_libraries(quickpropagation NeuralNetwork gtest gtest_main)
|
||||
|
||||
add_executable(rprop rprop.cpp)
|
||||
target_link_libraries(rprop NeuralNetwork gtest gtest_main)
|
||||
|
||||
# PERF
|
||||
|
||||
add_executable(backpropagation_function_cmp backpropagation_function_cmp.cpp)
|
||||
|
||||
165
tests/rprop.cpp
Normal file
165
tests/rprop.cpp
Normal file
@@ -0,0 +1,165 @@
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
#include <NeuralNetwork/Learning/RProp.h>
|
||||
#include <NeuralNetwork/ActivationFunction/HyperbolicTangent.h>
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Weffc++"
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
TEST(RProp,XOR) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(3,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::RProp prop(n);
|
||||
prop.setBatchSize(4);
|
||||
|
||||
for(int i=0;i<100;i++) {
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(RProp,XORHyperbolicTangent) {
|
||||
srand(time(NULL));
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::HyperbolicTangent a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::RProp prop(n);
|
||||
prop.setBatchSize(4);
|
||||
|
||||
for(int i=0;i<15000;i++) {
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(RProp,AND) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::RProp prop(n);
|
||||
prop.setBatchSize(4);
|
||||
|
||||
for(int i=0;i<100000;i++) {
|
||||
prop.teach({1,1},{1});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{0});
|
||||
prop.teach({1,0},{0});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(RProp,NOTAND) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::RProp prop(n);
|
||||
prop.setBatchSize(4);
|
||||
|
||||
for(int i=0;i<100000;i++) {
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{1});
|
||||
prop.teach({0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user