IO class as parrent of Solution and Problem
This commit is contained in:
@@ -33,7 +33,7 @@ int main()
|
||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({1})));
|
||||
p.push_back(X(std::vector<float>({1,1})));
|
||||
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,4,1});
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,2,4,1});
|
||||
Shin::NeuronNetwork::Learning::BackPropagation b(q);
|
||||
|
||||
b.debugOn();
|
||||
|
||||
@@ -22,7 +22,7 @@ int main()
|
||||
|
||||
for (int test=0;test<2;test++)
|
||||
{
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,40,1});
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,3,1});
|
||||
Shin::NeuronNetwork::Learning::BackPropagation b(q);
|
||||
|
||||
srand(time(NULL));
|
||||
@@ -49,7 +49,7 @@ int main()
|
||||
{
|
||||
std::cerr << "Testing without entropy\n";
|
||||
}
|
||||
b.setLearningCoeficient(0.1);//8);
|
||||
b.setLearningCoeficient(20);//8);
|
||||
for(int j=0;;j++)
|
||||
{
|
||||
double err=b.teachSet(p,s);
|
||||
|
||||
@@ -23,19 +23,19 @@ int main()
|
||||
srand(time(NULL));
|
||||
for (int test=0;test<3;test++)
|
||||
{
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,6,1});
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,4,1});
|
||||
Shin::NeuronNetwork::Learning::Reinforcement b(q);
|
||||
b.setPropagator(new Shin::NeuronNetwork::Learning::OpticalBackPropagation(q));
|
||||
b.getPropagator().setLearningCoeficient(0.9);
|
||||
b.getPropagator().allowEntropy();
|
||||
double targetQuality =1.7;
|
||||
//b.setPropagator(new Shin::NeuronNetwork::Learning::OpticalBackPropagation(q));
|
||||
b.getPropagator().setLearningCoeficient(3);
|
||||
//b.getPropagator().allowEntropy();
|
||||
double targetQuality =1;
|
||||
if(test==2)
|
||||
{
|
||||
targetQuality =1.62;
|
||||
std::cerr << "Testing with OBP ...\n";
|
||||
|
||||
b.setPropagator(new Shin::NeuronNetwork::Learning::OpticalBackPropagation(q));
|
||||
b.getPropagator().setLearningCoeficient(3);
|
||||
b.getPropagator().setLearningCoeficient(0.5);
|
||||
}
|
||||
b.setQualityFunction(
|
||||
[](const Shin::NeuronNetwork::Problem &pr,const Shin::NeuronNetwork::Solution &s)->float
|
||||
@@ -55,15 +55,15 @@ int main()
|
||||
|
||||
if(expect==0)
|
||||
{
|
||||
expect=0.33-s[0];
|
||||
expect=0.1-abs(s[0]);
|
||||
}else
|
||||
{
|
||||
expect=s[0]-0.67;
|
||||
expect=s[0]-0.9;
|
||||
}
|
||||
|
||||
// std::cerr << " returnning " << expect*5.0 << "\n";
|
||||
|
||||
return expect*9.0;
|
||||
return expect*19.0;
|
||||
});
|
||||
|
||||
std::vector<Shin::NeuronNetwork::Problem*> p;
|
||||
@@ -86,7 +86,6 @@ int main()
|
||||
// for(int i=0;i < 5;i++)
|
||||
{
|
||||
double err=b.learnSet(p);
|
||||
|
||||
if(i%100000==0)
|
||||
srand(time(NULL));
|
||||
if(i%200000==0 || err > targetQuality)
|
||||
|
||||
Reference in New Issue
Block a user