reffactored and recurrent implementation
This commit is contained in:
88
include/NeuralNetwork/Recurrent/Network.h
Normal file
88
include/NeuralNetwork/Recurrent/Network.h
Normal file
@@ -0,0 +1,88 @@
|
||||
#pragma once
|
||||
|
||||
#include "../Network.h"
|
||||
#include "Neuron.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include <sstream>
|
||||
#include <iomanip>
|
||||
#include <limits>
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace Recurrent {
|
||||
|
||||
/**
|
||||
* @author Tomas Cernik (Tom.Cernik@gmail.com)
|
||||
* @brief Reccurent model of Artifical neural network
|
||||
*/
|
||||
class Network: public NeuralNetwork::Network {
|
||||
public:
|
||||
|
||||
/**
|
||||
* @brief Constructor for Network
|
||||
* @param _inputSize is number of inputs to network
|
||||
* @param _outputSize is size of output from network
|
||||
* @param hiddenUnits is number of hiddenUnits to be created
|
||||
*/
|
||||
inline Network(size_t _inputSize, size_t _outputSize,size_t hiddenUnits=0):NeuralNetwork::Network(),inputSize(_inputSize),outputSize(_outputSize), neurons(0) {
|
||||
for(size_t i=0;i<_inputSize+_outputSize;i++) {
|
||||
addNeuron();
|
||||
}
|
||||
|
||||
for(size_t i=0;i<hiddenUnits;i++) {
|
||||
addNeuron();
|
||||
}
|
||||
};
|
||||
|
||||
// todo: implement
|
||||
inline Network(const std::string &json) {
|
||||
|
||||
}
|
||||
/**
|
||||
* @brief Virtual destructor for Network
|
||||
*/
|
||||
virtual ~Network() {};
|
||||
|
||||
/**
|
||||
* @brief This is a function to compute one iterations of network
|
||||
* @param input is input of network
|
||||
* @returns output of network
|
||||
*/
|
||||
inline virtual std::vector<float> computeOutput(const std::vector<float>& input) override {
|
||||
return computeOutput(input,1);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This is a function to compute iterations of network
|
||||
* @param input is input of network
|
||||
* @param iterations is number of iterations
|
||||
* @returns output of network
|
||||
*/
|
||||
std::vector<float> computeOutput(const std::vector<float>& input, unsigned int iterations);
|
||||
|
||||
std::vector<Neuron>& getNeurons () {
|
||||
return neurons;
|
||||
}
|
||||
|
||||
using NeuralNetwork::Network::stringify;
|
||||
|
||||
void stringify(std::ostream& out) const override;
|
||||
|
||||
Neuron& addNeuron() {
|
||||
neurons.push_back(Recurrent::Neuron(neurons.size()));
|
||||
Neuron &newNeuron=neurons.back();
|
||||
for(size_t i=0;i<neurons.size();i++) {
|
||||
neurons[i].setWeight(newNeuron,0.0);
|
||||
}
|
||||
return newNeuron;
|
||||
}
|
||||
|
||||
protected:
|
||||
size_t inputSize=0;
|
||||
size_t outputSize=0;
|
||||
|
||||
std::vector<Recurrent::Neuron> neurons;
|
||||
};
|
||||
}
|
||||
}
|
||||
123
include/NeuralNetwork/Recurrent/Neuron.h
Normal file
123
include/NeuralNetwork/Recurrent/Neuron.h
Normal file
@@ -0,0 +1,123 @@
|
||||
#pragma once
|
||||
|
||||
#include "../Neuron.h"
|
||||
#include <NeuralNetwork/ActivationFunction/Sigmoid.h>
|
||||
#include <NeuralNetwork/BasisFunction/Linear.h>
|
||||
#include <vector>
|
||||
|
||||
|
||||
#include <sstream>
|
||||
#include <iomanip>
|
||||
#include <limits>
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace Recurrent {
|
||||
|
||||
class Network;
|
||||
|
||||
/**
|
||||
* @author Tomas Cernik (Tom.Cernik@gmail.com)
|
||||
* @brief Class of recurrent neuron.
|
||||
*/
|
||||
class Neuron : public NeuralNetwork::Neuron
|
||||
{
|
||||
public:
|
||||
Neuron(unsigned long _id=0,const float& _bias = 0): NeuralNetwork::Neuron(), basis(new BasisFunction::Linear),
|
||||
activation(new ActivationFunction::Sigmoid(-4.9)),
|
||||
id_(_id),bias(_bias),weights(_id+1),_output(0),_value(0) {
|
||||
}
|
||||
|
||||
Neuron(const Neuron &r): NeuralNetwork::Neuron(), basis(r.basis->clone()), activation(r.activation->clone()),id_(r.id_),
|
||||
bias(r.bias), weights(r.weights), _output(r._output), _value(r._value) {
|
||||
}
|
||||
virtual ~Neuron() {
|
||||
delete basis;
|
||||
delete activation;
|
||||
};
|
||||
|
||||
virtual std::string stringify(const std::string &prefix="") const override;
|
||||
|
||||
Recurrent::Neuron& operator=(const NeuralNetwork::Recurrent::Neuron&r) {
|
||||
id_=r.id_;
|
||||
bias=r.bias;
|
||||
weights=r.weights;
|
||||
basis=r.basis->clone();
|
||||
activation=r.activation->clone();
|
||||
return *this;
|
||||
}
|
||||
|
||||
virtual long unsigned int id() const override {
|
||||
return id_;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Gets weight
|
||||
* @param n is neuron
|
||||
*/
|
||||
virtual float getWeight(const NeuralNetwork::Neuron &n) const override {
|
||||
return weights[n.id()];
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Sets weight
|
||||
* @param n is neuron
|
||||
* @param w is new weight for input neuron n
|
||||
*/
|
||||
virtual void setWeight(const NeuralNetwork::Neuron& n ,const float &w) override {
|
||||
if(weights.size()<n.id()+1) {
|
||||
weights.resize(n.id()+1);
|
||||
}
|
||||
weights[n.id()]=w;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns output of neuron
|
||||
*/
|
||||
virtual float output() const override {
|
||||
return _output;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns input of neuron
|
||||
*/
|
||||
virtual float value() const override {
|
||||
return _value;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Function sets bias for neuron
|
||||
* @param _bias is new bias (initial value for neuron)
|
||||
*/
|
||||
virtual void setBias(const float &_bias) override {
|
||||
bias=_bias;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Function returns bias for neuron
|
||||
*/
|
||||
virtual float getBias() const override {
|
||||
return bias;
|
||||
}
|
||||
|
||||
float operator()(const std::vector<float>& inputs) {
|
||||
//compute value
|
||||
_value=basis->operator()(weights,inputs)+bias;
|
||||
|
||||
//compute output
|
||||
_output=activation->operator()(_value);
|
||||
|
||||
return _output;
|
||||
}
|
||||
|
||||
protected:
|
||||
BasisFunction::BasisFunction *basis;
|
||||
ActivationFunction::ActivationFunction *activation;
|
||||
|
||||
unsigned long id_;
|
||||
float bias;
|
||||
std::vector<float> weights;
|
||||
float _output;
|
||||
float _value;
|
||||
};
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user