reffactored and recurrent implementation

This commit is contained in:
2016-01-22 13:21:34 +01:00
parent e61e616227
commit d424d87535
65 changed files with 12102 additions and 2361 deletions

View File

@@ -0,0 +1,88 @@
#pragma once
#include "../Network.h"
#include "Neuron.h"
#include <vector>
#include <sstream>
#include <iomanip>
#include <limits>
namespace NeuralNetwork {
namespace Recurrent {
/**
* @author Tomas Cernik (Tom.Cernik@gmail.com)
* @brief Reccurent model of Artifical neural network
*/
class Network: public NeuralNetwork::Network {
public:
/**
* @brief Constructor for Network
* @param _inputSize is number of inputs to network
* @param _outputSize is size of output from network
* @param hiddenUnits is number of hiddenUnits to be created
*/
inline Network(size_t _inputSize, size_t _outputSize,size_t hiddenUnits=0):NeuralNetwork::Network(),inputSize(_inputSize),outputSize(_outputSize), neurons(0) {
for(size_t i=0;i<_inputSize+_outputSize;i++) {
addNeuron();
}
for(size_t i=0;i<hiddenUnits;i++) {
addNeuron();
}
};
// todo: implement
inline Network(const std::string &json) {
}
/**
* @brief Virtual destructor for Network
*/
virtual ~Network() {};
/**
* @brief This is a function to compute one iterations of network
* @param input is input of network
* @returns output of network
*/
inline virtual std::vector<float> computeOutput(const std::vector<float>& input) override {
return computeOutput(input,1);
}
/**
* @brief This is a function to compute iterations of network
* @param input is input of network
* @param iterations is number of iterations
* @returns output of network
*/
std::vector<float> computeOutput(const std::vector<float>& input, unsigned int iterations);
std::vector<Neuron>& getNeurons () {
return neurons;
}
using NeuralNetwork::Network::stringify;
void stringify(std::ostream& out) const override;
Neuron& addNeuron() {
neurons.push_back(Recurrent::Neuron(neurons.size()));
Neuron &newNeuron=neurons.back();
for(size_t i=0;i<neurons.size();i++) {
neurons[i].setWeight(newNeuron,0.0);
}
return newNeuron;
}
protected:
size_t inputSize=0;
size_t outputSize=0;
std::vector<Recurrent::Neuron> neurons;
};
}
}

View File

@@ -0,0 +1,123 @@
#pragma once
#include "../Neuron.h"
#include <NeuralNetwork/ActivationFunction/Sigmoid.h>
#include <NeuralNetwork/BasisFunction/Linear.h>
#include <vector>
#include <sstream>
#include <iomanip>
#include <limits>
namespace NeuralNetwork {
namespace Recurrent {
class Network;
/**
* @author Tomas Cernik (Tom.Cernik@gmail.com)
* @brief Class of recurrent neuron.
*/
class Neuron : public NeuralNetwork::Neuron
{
public:
Neuron(unsigned long _id=0,const float& _bias = 0): NeuralNetwork::Neuron(), basis(new BasisFunction::Linear),
activation(new ActivationFunction::Sigmoid(-4.9)),
id_(_id),bias(_bias),weights(_id+1),_output(0),_value(0) {
}
Neuron(const Neuron &r): NeuralNetwork::Neuron(), basis(r.basis->clone()), activation(r.activation->clone()),id_(r.id_),
bias(r.bias), weights(r.weights), _output(r._output), _value(r._value) {
}
virtual ~Neuron() {
delete basis;
delete activation;
};
virtual std::string stringify(const std::string &prefix="") const override;
Recurrent::Neuron& operator=(const NeuralNetwork::Recurrent::Neuron&r) {
id_=r.id_;
bias=r.bias;
weights=r.weights;
basis=r.basis->clone();
activation=r.activation->clone();
return *this;
}
virtual long unsigned int id() const override {
return id_;
};
/**
* @brief Gets weight
* @param n is neuron
*/
virtual float getWeight(const NeuralNetwork::Neuron &n) const override {
return weights[n.id()];
}
/**
* @brief Sets weight
* @param n is neuron
* @param w is new weight for input neuron n
*/
virtual void setWeight(const NeuralNetwork::Neuron& n ,const float &w) override {
if(weights.size()<n.id()+1) {
weights.resize(n.id()+1);
}
weights[n.id()]=w;
}
/**
* @brief Returns output of neuron
*/
virtual float output() const override {
return _output;
}
/**
* @brief Returns input of neuron
*/
virtual float value() const override {
return _value;
}
/**
* @brief Function sets bias for neuron
* @param _bias is new bias (initial value for neuron)
*/
virtual void setBias(const float &_bias) override {
bias=_bias;
}
/**
* @brief Function returns bias for neuron
*/
virtual float getBias() const override {
return bias;
}
float operator()(const std::vector<float>& inputs) {
//compute value
_value=basis->operator()(weights,inputs)+bias;
//compute output
_output=activation->operator()(_value);
return _output;
}
protected:
BasisFunction::BasisFunction *basis;
ActivationFunction::ActivationFunction *activation;
unsigned long id_;
float bias;
std::vector<float> weights;
float _output;
float _value;
};
}
}