reffactored and recurrent implementation
This commit is contained in:
88
include/NeuralNetwork/Recurrent/Network.h
Normal file
88
include/NeuralNetwork/Recurrent/Network.h
Normal file
@@ -0,0 +1,88 @@
|
||||
#pragma once
|
||||
|
||||
#include "../Network.h"
|
||||
#include "Neuron.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include <sstream>
|
||||
#include <iomanip>
|
||||
#include <limits>
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace Recurrent {
|
||||
|
||||
/**
|
||||
* @author Tomas Cernik (Tom.Cernik@gmail.com)
|
||||
* @brief Reccurent model of Artifical neural network
|
||||
*/
|
||||
class Network: public NeuralNetwork::Network {
|
||||
public:
|
||||
|
||||
/**
|
||||
* @brief Constructor for Network
|
||||
* @param _inputSize is number of inputs to network
|
||||
* @param _outputSize is size of output from network
|
||||
* @param hiddenUnits is number of hiddenUnits to be created
|
||||
*/
|
||||
inline Network(size_t _inputSize, size_t _outputSize,size_t hiddenUnits=0):NeuralNetwork::Network(),inputSize(_inputSize),outputSize(_outputSize), neurons(0) {
|
||||
for(size_t i=0;i<_inputSize+_outputSize;i++) {
|
||||
addNeuron();
|
||||
}
|
||||
|
||||
for(size_t i=0;i<hiddenUnits;i++) {
|
||||
addNeuron();
|
||||
}
|
||||
};
|
||||
|
||||
// todo: implement
|
||||
inline Network(const std::string &json) {
|
||||
|
||||
}
|
||||
/**
|
||||
* @brief Virtual destructor for Network
|
||||
*/
|
||||
virtual ~Network() {};
|
||||
|
||||
/**
|
||||
* @brief This is a function to compute one iterations of network
|
||||
* @param input is input of network
|
||||
* @returns output of network
|
||||
*/
|
||||
inline virtual std::vector<float> computeOutput(const std::vector<float>& input) override {
|
||||
return computeOutput(input,1);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This is a function to compute iterations of network
|
||||
* @param input is input of network
|
||||
* @param iterations is number of iterations
|
||||
* @returns output of network
|
||||
*/
|
||||
std::vector<float> computeOutput(const std::vector<float>& input, unsigned int iterations);
|
||||
|
||||
std::vector<Neuron>& getNeurons () {
|
||||
return neurons;
|
||||
}
|
||||
|
||||
using NeuralNetwork::Network::stringify;
|
||||
|
||||
void stringify(std::ostream& out) const override;
|
||||
|
||||
Neuron& addNeuron() {
|
||||
neurons.push_back(Recurrent::Neuron(neurons.size()));
|
||||
Neuron &newNeuron=neurons.back();
|
||||
for(size_t i=0;i<neurons.size();i++) {
|
||||
neurons[i].setWeight(newNeuron,0.0);
|
||||
}
|
||||
return newNeuron;
|
||||
}
|
||||
|
||||
protected:
|
||||
size_t inputSize=0;
|
||||
size_t outputSize=0;
|
||||
|
||||
std::vector<Recurrent::Neuron> neurons;
|
||||
};
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user