Merge branch 'bp'
This commit is contained in:
@@ -61,9 +61,12 @@ endif(USE_SSE)
|
||||
set (LIBRARY_SOURCES
|
||||
src/sse_mathfun.cpp
|
||||
|
||||
src/NeuralNetwork/Learning/BatchPropagation.cpp
|
||||
src/NeuralNetwork/Learning/BackPropagation.cpp
|
||||
src/NeuralNetwork/Learning/QuickPropagation.cpp
|
||||
src/NeuralNetwork/Learning/PerceptronLearning.cpp
|
||||
src/NeuralNetwork/Learning/RProp.cpp
|
||||
src/NeuralNetwork/Learning/iRPropPlus.cpp
|
||||
|
||||
src/NeuralNetwork/ConstructiveAlgorithms/CascadeCorrelation.cpp
|
||||
src/NeuralNetwork/ConstructiveAlgorithms/Cascade2.cpp
|
||||
@@ -118,6 +121,9 @@ IF(ENABLE_TESTS)
|
||||
add_test(quickpropagation tests/quickpropagation)
|
||||
set_property(TEST quickpropagation PROPERTY LABELS unit)
|
||||
|
||||
add_test(rprop tests/rprop)
|
||||
set_property(TEST rprop PROPERTY LABELS unit)
|
||||
|
||||
add_test(recurrent tests/recurrent)
|
||||
set_property(TEST recurrent PROPERTY LABELS unit)
|
||||
|
||||
@@ -136,8 +142,5 @@ IF(ENABLE_TESTS)
|
||||
add_test(recurrent_perf tests/recurrent_perf)
|
||||
set_property(TEST recurrent_perf PROPERTY LABELS perf)
|
||||
|
||||
add_test(genetic_programing tests/genetic_programing)
|
||||
set_property(TEST genetic_programing PROPERTY LABELS unit)
|
||||
|
||||
ENDIF(ENABLE_TESTS)
|
||||
|
||||
|
||||
@@ -0,0 +1,39 @@
|
||||
#pragma once
|
||||
|
||||
#include "./ActivationFunction.h"
|
||||
|
||||
#include <cassert>
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace ActivationFunction {
|
||||
|
||||
class LeakyRectifiedLinear: public ActivationFunction {
|
||||
public:
|
||||
LeakyRectifiedLinear(const float &lambdaP=0.04): lambda(lambdaP) {}
|
||||
|
||||
inline virtual float derivatedOutput(const float &inp,const float &) const override {
|
||||
return inp > 0.0f ? lambda : 0.01f*lambda;
|
||||
}
|
||||
|
||||
inline virtual float operator()(const float &x) const override {
|
||||
return x > 0.0? x : 0.001f*x;
|
||||
};
|
||||
|
||||
virtual ActivationFunction* clone() const override {
|
||||
return new LeakyRectifiedLinear(lambda);
|
||||
}
|
||||
|
||||
virtual SimpleJSON::Type::Object serialize() const override {
|
||||
return {{"class", "NeuralNetwork::ActivationFunction::LeakyRectifiedLinear"}, {"lambda", lambda}};
|
||||
}
|
||||
|
||||
static std::unique_ptr<LeakyRectifiedLinear> deserialize(const SimpleJSON::Type::Object &obj) {
|
||||
return std::unique_ptr<LeakyRectifiedLinear>(new LeakyRectifiedLinear(obj["lambda"].as<double>()));
|
||||
}
|
||||
|
||||
protected:
|
||||
float lambda;
|
||||
NEURAL_NETWORK_REGISTER_ACTIVATION_FUNCTION(NeuralNetwork::ActivationFunction::LeakyRectifiedLinear, LeakyRectifiedLinear::deserialize)
|
||||
};
|
||||
}
|
||||
}
|
||||
39
include/NeuralNetwork/ActivationFunction/RectifiedLinear.h
Normal file
39
include/NeuralNetwork/ActivationFunction/RectifiedLinear.h
Normal file
@@ -0,0 +1,39 @@
|
||||
#pragma once
|
||||
|
||||
#include "./ActivationFunction.h"
|
||||
|
||||
#include <cassert>
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace ActivationFunction {
|
||||
|
||||
class RectifiedLinear: public ActivationFunction {
|
||||
public:
|
||||
RectifiedLinear(const float &lambdaP=0.1): lambda(lambdaP) {}
|
||||
|
||||
inline virtual float derivatedOutput(const float &inp,const float &) const override {
|
||||
return inp > 0.0f ? lambda : 0.0f;
|
||||
}
|
||||
|
||||
inline virtual float operator()(const float &x) const override {
|
||||
return std::max(0.0f,x);
|
||||
};
|
||||
|
||||
virtual ActivationFunction* clone() const override {
|
||||
return new RectifiedLinear(lambda);
|
||||
}
|
||||
|
||||
virtual SimpleJSON::Type::Object serialize() const override {
|
||||
return {{"class", "NeuralNetwork::ActivationFunction::RectifiedLinear"}, {"lambda", lambda}};
|
||||
}
|
||||
|
||||
static std::unique_ptr<RectifiedLinear> deserialize(const SimpleJSON::Type::Object &obj) {
|
||||
return std::unique_ptr<RectifiedLinear>(new RectifiedLinear(obj["lambda"].as<double>()));
|
||||
}
|
||||
|
||||
protected:
|
||||
float lambda;
|
||||
NEURAL_NETWORK_REGISTER_ACTIVATION_FUNCTION(NeuralNetwork::ActivationFunction::RectifiedLinear, RectifiedLinear::deserialize)
|
||||
};
|
||||
}
|
||||
}
|
||||
@@ -67,6 +67,15 @@ namespace FeedForward {
|
||||
return *neurons[neuron];
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This is a virtual function for selecting neuron
|
||||
* @param neuron is position in layer
|
||||
* @returns Specific neuron
|
||||
*/
|
||||
const NeuronInterface& operator[](const std::size_t& neuron) const {
|
||||
return *neurons[neuron];
|
||||
}
|
||||
|
||||
void solve(const std::vector<float> &input, std::vector<float> &output);
|
||||
|
||||
/**
|
||||
|
||||
@@ -1,10 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
#include "CorrectionFunction/Linear.h"
|
||||
#include "BatchPropagation.h"
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace Learning {
|
||||
@@ -12,24 +8,20 @@ namespace Learning {
|
||||
/** @class BackPropagation
|
||||
* @brief
|
||||
*/
|
||||
class BackPropagation {
|
||||
class BackPropagation : public BatchPropagation {
|
||||
|
||||
public:
|
||||
inline BackPropagation(FeedForward::Network &feedForwardNetwork, CorrectionFunction::CorrectionFunction *correction = new CorrectionFunction::Linear()):
|
||||
network(feedForwardNetwork), correctionFunction(correction),learningCoefficient(0.4), slopes() {
|
||||
BackPropagation(FeedForward::Network &feedForwardNetwork, std::shared_ptr<CorrectionFunction::CorrectionFunction> correction = std::make_shared<CorrectionFunction::Linear>()):
|
||||
BatchPropagation(feedForwardNetwork,correction), learningCoefficient(0.4) {
|
||||
resize();
|
||||
}
|
||||
|
||||
virtual ~BackPropagation() {
|
||||
delete correctionFunction;
|
||||
}
|
||||
|
||||
BackPropagation(const BackPropagation&)=delete;
|
||||
BackPropagation& operator=(const NeuralNetwork::Learning::BackPropagation&) = delete;
|
||||
|
||||
void teach(const std::vector<float> &input, const std::vector<float> &output);
|
||||
|
||||
inline virtual void setLearningCoefficient (const float& coefficient) { learningCoefficient=coefficient; }
|
||||
void setLearningCoefficient (const float& coefficient) {
|
||||
learningCoefficient=coefficient;
|
||||
}
|
||||
|
||||
float getMomentumWeight() const {
|
||||
return momentumWeight;
|
||||
@@ -37,6 +29,7 @@ namespace Learning {
|
||||
|
||||
void setMomentumWeight(const float& m) {
|
||||
momentumWeight=m;
|
||||
resize();
|
||||
}
|
||||
|
||||
float getWeightDecay() const {
|
||||
@@ -49,47 +42,21 @@ namespace Learning {
|
||||
|
||||
protected:
|
||||
|
||||
virtual inline void resize() {
|
||||
if(slopes.size()!=network.size())
|
||||
slopes.resize(network.size());
|
||||
|
||||
for(std::size_t i=0; i < network.size(); i++) {
|
||||
if(slopes[i].size()!=network[i].size())
|
||||
slopes[i].resize(network[i].size());
|
||||
virtual inline void resize() override {
|
||||
BatchPropagation::resize();
|
||||
if(momentumWeight > 0.0) {
|
||||
_lastDeltas = _gradients;
|
||||
}
|
||||
|
||||
if(lastDeltas.size()!=network.size())
|
||||
lastDeltas.resize(network.size());
|
||||
|
||||
for(std::size_t i=0; i < network.size(); i++) {
|
||||
if(lastDeltas[i].size()!=network[i].size()) {
|
||||
lastDeltas[i].resize(network[i].size());
|
||||
|
||||
for(std::size_t j = 0; j < lastDeltas[i].size(); j++) {
|
||||
lastDeltas[i][j] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
deltas= lastDeltas;
|
||||
}
|
||||
|
||||
virtual void updateWeights(const std::vector<float> &input);
|
||||
|
||||
virtual void computeSlopes(const std::vector<float> &expectation);
|
||||
|
||||
FeedForward::Network &network;
|
||||
|
||||
CorrectionFunction::CorrectionFunction *correctionFunction;
|
||||
virtual void updateWeightsAndEndBatch() override;
|
||||
|
||||
float learningCoefficient;
|
||||
|
||||
float momentumWeight = 0.0;
|
||||
|
||||
float weightDecay = 0.0;
|
||||
|
||||
std::vector<std::vector<float>> slopes;
|
||||
std::vector<std::vector<float>> deltas;
|
||||
std::vector<std::vector<float>> lastDeltas;
|
||||
std::vector<std::vector<std::vector<float>>> _lastDeltas = {};
|
||||
|
||||
};
|
||||
}
|
||||
}
|
||||
52
include/NeuralNetwork/Learning/BatchPropagation.h
Normal file
52
include/NeuralNetwork/Learning/BatchPropagation.h
Normal file
@@ -0,0 +1,52 @@
|
||||
#pragma once
|
||||
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
|
||||
#include "CorrectionFunction/Linear.h"
|
||||
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace Learning {
|
||||
class BatchPropagation {
|
||||
public:
|
||||
BatchPropagation(FeedForward::Network &ffn, std::shared_ptr<CorrectionFunction::CorrectionFunction> correction) : _network(ffn), _correctionFunction(correction) {
|
||||
|
||||
}
|
||||
|
||||
virtual ~BatchPropagation() {
|
||||
|
||||
}
|
||||
|
||||
void teach(const std::vector<float> &input, const std::vector<float> &output);
|
||||
|
||||
void finishTeaching();
|
||||
|
||||
std::size_t getBatchSize() const {
|
||||
return _batchSize;
|
||||
}
|
||||
|
||||
void setBatchSize(std::size_t size) {
|
||||
_batchSize = size;
|
||||
}
|
||||
protected:
|
||||
virtual void updateWeightsAndEndBatch() = 0;
|
||||
virtual void resize();
|
||||
|
||||
FeedForward::Network &_network;
|
||||
std::shared_ptr<CorrectionFunction::CorrectionFunction> _correctionFunction;
|
||||
|
||||
std::size_t _batchSize = 1;
|
||||
std::size_t _currentBatchSize = 0;
|
||||
|
||||
std::vector<std::vector<float>> _slopes = {};
|
||||
std::vector<std::vector<std::vector<float>>> _gradients = {};
|
||||
|
||||
bool init = false;
|
||||
private:
|
||||
void computeSlopes(const std::vector<float> &expectation);
|
||||
void computeDeltas(const std::vector<float> &input);
|
||||
};
|
||||
}
|
||||
}
|
||||
@@ -1,23 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "./BackPropagation.h"
|
||||
#include "./CorrectionFunction/Optical.h"
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace Learning {
|
||||
|
||||
/** @class OpticalBackPropagation
|
||||
* @brief
|
||||
*/
|
||||
class OpticalBackPropagation : public BackPropagation {
|
||||
|
||||
public:
|
||||
OpticalBackPropagation(FeedForward::Network &feedForwardNetwork): BackPropagation(feedForwardNetwork,new CorrectionFunction::Optical()) {
|
||||
|
||||
}
|
||||
|
||||
virtual ~OpticalBackPropagation() {
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
@@ -4,7 +4,7 @@
|
||||
#include <cmath>
|
||||
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
#include "BackPropagation.h"
|
||||
#include "BatchPropagation.h"
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace Learning {
|
||||
@@ -12,49 +12,33 @@ namespace NeuralNetwork {
|
||||
/** @class QuickPropagation
|
||||
* @brief
|
||||
*/
|
||||
class QuickPropagation : public BackPropagation {
|
||||
class QuickPropagation : public BatchPropagation {
|
||||
|
||||
public:
|
||||
inline QuickPropagation(FeedForward::Network &feedForwardNetwork, CorrectionFunction::CorrectionFunction *correction = new CorrectionFunction::Linear()):
|
||||
BackPropagation(feedForwardNetwork,correction),previousSlopes() {
|
||||
resize();
|
||||
inline QuickPropagation(FeedForward::Network &feedForwardNetwork, std::shared_ptr<CorrectionFunction::CorrectionFunction> correction = std::make_shared<CorrectionFunction::Linear>()):
|
||||
BatchPropagation(feedForwardNetwork,correction) {
|
||||
}
|
||||
|
||||
virtual ~QuickPropagation() {
|
||||
}
|
||||
|
||||
protected:
|
||||
float _maxChange=1.75;
|
||||
float _epsilon=0.5;
|
||||
|
||||
virtual inline void resize() override {
|
||||
if(slopes.size()!=network.size())
|
||||
slopes.resize(network.size());
|
||||
|
||||
for(std::size_t i=0; i < network.size(); i++) {
|
||||
if(slopes[i].size()!=network[i].size())
|
||||
slopes[i].resize(network[i].size());
|
||||
}
|
||||
|
||||
if(deltas.size()!=network.size())
|
||||
deltas.resize(network.size());
|
||||
|
||||
for(std::size_t i=0; i < network.size(); i++) {
|
||||
if(deltas[i].size()!=network[i].size())
|
||||
deltas[i].resize(network[i].size());
|
||||
|
||||
for(std::size_t j=0; j < previousSlopes[i].size(); j++) {
|
||||
deltas[i][j]=1.0;
|
||||
}
|
||||
}
|
||||
weightChange= deltas;
|
||||
void setLearningCoefficient (const float& coefficient) {
|
||||
}
|
||||
|
||||
virtual void updateWeights(const std::vector<float> &input) override;
|
||||
protected:
|
||||
|
||||
std::vector<std::vector<float>> previousSlopes ={};
|
||||
std::vector<std::vector<float>> deltas ={};
|
||||
std::vector<std::vector<float>> weightChange ={};
|
||||
virtual void updateWeightsAndEndBatch() override;
|
||||
|
||||
float _maxChange=1.75;
|
||||
|
||||
virtual inline void resize() override {
|
||||
BatchPropagation::resize();
|
||||
_lastGradients = _gradients;
|
||||
_lastDeltas = _gradients;
|
||||
}
|
||||
|
||||
std::vector<std::vector<std::vector<float>>> _lastDeltas = {};
|
||||
std::vector<std::vector<std::vector<float>>> _lastGradients = {};
|
||||
};
|
||||
}
|
||||
}
|
||||
63
include/NeuralNetwork/Learning/RProp.h
Normal file
63
include/NeuralNetwork/Learning/RProp.h
Normal file
@@ -0,0 +1,63 @@
|
||||
#pragma once
|
||||
|
||||
|
||||
#include "BatchPropagation.h"
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace Learning {
|
||||
|
||||
/** @class Resilient Propagation
|
||||
* @brief
|
||||
*/
|
||||
class RProp : public BatchPropagation {
|
||||
|
||||
public:
|
||||
RProp(FeedForward::Network &feedForwardNetwork, std::shared_ptr<CorrectionFunction::CorrectionFunction> correction = std::make_shared<CorrectionFunction::Linear>()):
|
||||
BatchPropagation(feedForwardNetwork, correction) {
|
||||
}
|
||||
|
||||
RProp(const RProp&)=delete;
|
||||
RProp& operator=(const NeuralNetwork::Learning::RProp&) = delete;
|
||||
|
||||
void setInitialWeightChange(float initVal) {
|
||||
initialWeightChange=initVal;
|
||||
}
|
||||
void setLearningCoefficient(float) {
|
||||
|
||||
}
|
||||
protected:
|
||||
|
||||
virtual inline void resize() override {
|
||||
BatchPropagation::resize();
|
||||
|
||||
_lastGradients =_gradients;
|
||||
|
||||
_changesOfWeightChanges = _lastGradients;
|
||||
for(std::size_t i = 1; i < _network.size(); i++) {
|
||||
for(std::size_t j = 0; j < _changesOfWeightChanges[i].size(); j++) {
|
||||
std::fill(_changesOfWeightChanges[i][j].begin(),_changesOfWeightChanges[i][j].end(),initialWeightChange);
|
||||
}
|
||||
}
|
||||
_lastWeightChanges = _lastGradients;
|
||||
for(std::size_t i = 1; i < _network.size(); i++) {
|
||||
for(std::size_t j = 0; j < _lastWeightChanges[i].size(); j++) {
|
||||
std::fill(_lastWeightChanges[i][j].begin(),_lastWeightChanges[i][j].end(),0.1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void updateWeightsAndEndBatch() override;
|
||||
|
||||
std::vector<std::vector<std::vector<float>>> _lastGradients = {};
|
||||
std::vector<std::vector<std::vector<float>>> _lastWeightChanges = {};
|
||||
std::vector<std::vector<std::vector<float>>> _changesOfWeightChanges = {};
|
||||
|
||||
float maxChangeOfWeights = 50;
|
||||
float minChangeOfWeights = 0.0001;
|
||||
|
||||
float initialWeightChange=0.02;
|
||||
float weightChangePlus=1.2;
|
||||
float weightChangeMinus=0.5;
|
||||
};
|
||||
}
|
||||
}
|
||||
64
include/NeuralNetwork/Learning/iRPropPlus.h
Normal file
64
include/NeuralNetwork/Learning/iRPropPlus.h
Normal file
@@ -0,0 +1,64 @@
|
||||
#pragma once
|
||||
|
||||
#include "BatchPropagation.h"
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace Learning {
|
||||
|
||||
/** @class Resilient Propagation
|
||||
* @brief
|
||||
*/
|
||||
class iRPropPlus : public BatchPropagation {
|
||||
|
||||
public:
|
||||
iRPropPlus(FeedForward::Network &feedForwardNetwork, std::shared_ptr<CorrectionFunction::CorrectionFunction> correction = std::make_shared<CorrectionFunction::Linear>()):
|
||||
BatchPropagation(feedForwardNetwork, correction) {
|
||||
}
|
||||
|
||||
iRPropPlus(const iRPropPlus&)=delete;
|
||||
iRPropPlus& operator=(const NeuralNetwork::Learning::iRPropPlus&) = delete;
|
||||
|
||||
void setInitialWeightChange(float initVal) {
|
||||
initialWeightChange=initVal;
|
||||
}
|
||||
void setLearningCoefficient(float) {
|
||||
|
||||
}
|
||||
protected:
|
||||
|
||||
virtual inline void resize() override {
|
||||
BatchPropagation::resize();
|
||||
|
||||
_lastGradients =_gradients;
|
||||
|
||||
_changesOfWeightChanges = _lastGradients;
|
||||
for(std::size_t i = 1; i < _network.size(); i++) {
|
||||
for(std::size_t j = 0; j < _changesOfWeightChanges[i].size(); j++) {
|
||||
std::fill(_changesOfWeightChanges[i][j].begin(),_changesOfWeightChanges[i][j].end(),initialWeightChange);
|
||||
}
|
||||
}
|
||||
_lastWeightChanges = _lastGradients;
|
||||
for(std::size_t i = 1; i < _network.size(); i++) {
|
||||
for(std::size_t j = 0; j < _lastWeightChanges[i].size(); j++) {
|
||||
std::fill(_lastWeightChanges[i][j].begin(),_lastWeightChanges[i][j].end(),0.1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void updateWeightsAndEndBatch() override;
|
||||
|
||||
std::vector<std::vector<std::vector<float>>> _lastGradients = {};
|
||||
std::vector<std::vector<std::vector<float>>> _lastWeightChanges = {};
|
||||
std::vector<std::vector<std::vector<float>>> _changesOfWeightChanges = {};
|
||||
|
||||
float _prevError=0;
|
||||
|
||||
float maxChangeOfWeights = 5;
|
||||
float minChangeOfWeights = 0.0001;
|
||||
|
||||
float initialWeightChange=0.02;
|
||||
float weightChangePlus=1.2;
|
||||
float weightChangeMinus=0.5;
|
||||
};
|
||||
}
|
||||
}
|
||||
@@ -108,7 +108,7 @@ namespace NeuralNetwork
|
||||
/**
|
||||
* @brief getter for activation function of neuron
|
||||
*/
|
||||
virtual ActivationFunction::ActivationFunction& getActivationFunction() =0;
|
||||
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const =0;
|
||||
|
||||
virtual void setBasisFunction(const BasisFunction::BasisFunction& basisFunction) =0;
|
||||
|
||||
@@ -167,7 +167,7 @@ namespace NeuralNetwork
|
||||
return *basis;
|
||||
}
|
||||
|
||||
virtual ActivationFunction::ActivationFunction& getActivationFunction() override {
|
||||
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const override {
|
||||
return *activation;
|
||||
}
|
||||
|
||||
@@ -216,7 +216,7 @@ namespace NeuralNetwork
|
||||
throw usageException("basis function");
|
||||
}
|
||||
|
||||
virtual ActivationFunction::ActivationFunction& getActivationFunction() override {
|
||||
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const override {
|
||||
throw usageException("biasNeuron - activation function");
|
||||
}
|
||||
|
||||
@@ -267,7 +267,7 @@ namespace NeuralNetwork
|
||||
throw usageException("basis function");
|
||||
}
|
||||
|
||||
virtual ActivationFunction::ActivationFunction& getActivationFunction() override {
|
||||
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const override {
|
||||
throw usageException("input neuron - activation function");
|
||||
}
|
||||
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
#include <NeuralNetwork/ConstructiveAlgorithms/CascadeCorrelation.h>
|
||||
|
||||
#include <NeuralNetwork/Learning/BackPropagation.h>
|
||||
|
||||
using namespace NeuralNetwork::ConstructiveAlgorihtms;
|
||||
|
||||
float CascadeCorrelation::trainOutputs(Cascade::Network &network, const std::vector <CascadeCorrelation::TrainingPattern> &patterns) {
|
||||
|
||||
@@ -1,74 +1,27 @@
|
||||
#include <NeuralNetwork/Learning/BackPropagation.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <immintrin.h>
|
||||
void NeuralNetwork::Learning::BackPropagation::updateWeightsAndEndBatch() {
|
||||
|
||||
void NeuralNetwork::Learning::BackPropagation::teach(const std::vector<float> &input, const std::vector<float> &expectation) {
|
||||
bool enableMoments = momentumWeight > 0.0;
|
||||
|
||||
network.computeOutput(input);
|
||||
for(std::size_t layerIndex=1;layerIndex<_network.size();layerIndex++) {
|
||||
auto &layer = _network[layerIndex];
|
||||
auto &prevLayer = _network[layerIndex - 1];
|
||||
|
||||
resize();
|
||||
std::size_t prevLayerSize = prevLayer.size();
|
||||
std::size_t layerSize = layer.size();
|
||||
|
||||
computeSlopes(expectation);
|
||||
for(std::size_t j = 1; j < layerSize; j++) {
|
||||
for(std::size_t k = 0; k < prevLayerSize; k++) {
|
||||
float delta = _gradients[layerIndex][j][k]*learningCoefficient - weightDecay * layer[j].weight(k);
|
||||
|
||||
updateWeights(input);
|
||||
|
||||
std::swap(deltas,lastDeltas);
|
||||
}
|
||||
|
||||
|
||||
void NeuralNetwork::Learning::BackPropagation::updateWeights(const std::vector<float> &input) {
|
||||
|
||||
for(std::size_t layerIndex=1;layerIndex<network.size();layerIndex++) {
|
||||
auto &layer=network[layerIndex];
|
||||
auto &prevLayer=network[layerIndex-1];
|
||||
|
||||
std::size_t prevLayerSize=prevLayer.size();
|
||||
std::size_t layerSize=layer.size();
|
||||
|
||||
for(std::size_t j=1;j<layerSize;j++) {
|
||||
|
||||
float delta =slopes[layerIndex][j]*learningCoefficient;
|
||||
|
||||
//momentum
|
||||
delta += momentumWeight * lastDeltas[layerIndex][j];
|
||||
|
||||
deltas[layerIndex][j]=delta;
|
||||
|
||||
layer[j].weight(0)+=delta - weightDecay *layer[j].weight(0);
|
||||
|
||||
for(std::size_t k=1;k<prevLayerSize;k++) {
|
||||
if(layerIndex==1) {
|
||||
layer[j].weight(k)+=delta*input[k-1] - weightDecay * layer[j].weight(k);
|
||||
} else {
|
||||
layer[j].weight(k)+=delta*prevLayer[k].output() - weightDecay * layer[j].weight(k);
|
||||
if(enableMoments) {
|
||||
delta += momentumWeight * _lastDeltas[layerIndex][j][k];
|
||||
_lastDeltas[layerIndex][j][k]=delta;
|
||||
}
|
||||
|
||||
layer[j].weight(k)+= delta;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void NeuralNetwork::Learning::BackPropagation::computeSlopes(const std::vector<float> &expectation) {
|
||||
auto& outputLayer=network[network.size()-1];
|
||||
for(std::size_t j=1;j<outputLayer.size();j++) {
|
||||
auto& neuron = outputLayer[j];
|
||||
slopes[network.size()-1][j]=correctionFunction->operator()( expectation[j-1], neuron.output())*
|
||||
neuron.getActivationFunction().derivatedOutput(neuron.value(),neuron.output());
|
||||
}
|
||||
|
||||
for(int layerIndex=static_cast<int>(network.size()-2);layerIndex>0;layerIndex--) {
|
||||
auto &layer=network[layerIndex];
|
||||
|
||||
for(std::size_t j=1;j<layer.size();j++) {
|
||||
float deltasWeight = 0;
|
||||
|
||||
for(std::size_t k=1;k<network[layerIndex+1].size();k++) {
|
||||
deltasWeight+=slopes[layerIndex+1][k]* network[layerIndex+1][k].weight(j);
|
||||
}
|
||||
|
||||
slopes[layerIndex][j]=deltasWeight*layer[j].getActivationFunction().derivatedOutput(layer[j].value(),layer[j].output());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
92
src/NeuralNetwork/Learning/BatchPropagation.cpp
Normal file
92
src/NeuralNetwork/Learning/BatchPropagation.cpp
Normal file
@@ -0,0 +1,92 @@
|
||||
#include <NeuralNetwork/Learning/BatchPropagation.h>
|
||||
|
||||
void NeuralNetwork::Learning::BatchPropagation::teach(const std::vector<float> &input, const std::vector<float> &expectation) {
|
||||
_network.computeOutput(input);
|
||||
if(!init) {
|
||||
resize();
|
||||
init = true;
|
||||
}
|
||||
|
||||
computeSlopes(expectation);
|
||||
|
||||
computeDeltas(input);
|
||||
if(++_currentBatchSize >= _batchSize) {
|
||||
finishTeaching();
|
||||
}
|
||||
}
|
||||
|
||||
void NeuralNetwork::Learning::BatchPropagation::finishTeaching() {
|
||||
updateWeightsAndEndBatch();
|
||||
_currentBatchSize=0;
|
||||
}
|
||||
|
||||
void NeuralNetwork::Learning::BatchPropagation::computeSlopes(const std::vector<float> &expectation) {
|
||||
const auto& outputLayer=_network[_network.size()-1];
|
||||
for(std::size_t j=1;j<outputLayer.size();j++) {
|
||||
const auto& neuron = outputLayer[j];
|
||||
_slopes[_network.size()-1][j]=_correctionFunction->operator()( expectation[j-1], neuron.output())*
|
||||
neuron.getActivationFunction().derivatedOutput(neuron.value(),neuron.output());
|
||||
}
|
||||
|
||||
for(int layerIndex=static_cast<int>(_network.size()-2);layerIndex>0;layerIndex--) {
|
||||
auto &layer=_network[layerIndex];
|
||||
|
||||
for(std::size_t j=1;j<layer.size();j++) {
|
||||
float deltasWeight = 0;
|
||||
|
||||
for(std::size_t k=1;k<_network[layerIndex+1].size();k++) {
|
||||
deltasWeight+=_slopes[layerIndex+1][k]* _network[layerIndex+1][k].weight(j);
|
||||
}
|
||||
|
||||
_slopes[layerIndex][j]=deltasWeight*layer[j].getActivationFunction().derivatedOutput(layer[j].value(),layer[j].output());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void NeuralNetwork::Learning::BatchPropagation::computeDeltas(const std::vector<float> &input) {
|
||||
for(std::size_t layerIndex=1;layerIndex<_network.size();layerIndex++) {
|
||||
auto &layer=_network[layerIndex];
|
||||
auto &prevLayer=_network[layerIndex-1];
|
||||
|
||||
std::size_t prevLayerSize=prevLayer.size();
|
||||
std::size_t layerSize=layer.size();
|
||||
|
||||
for(std::size_t j=1;j<layerSize;j++) {
|
||||
float update = _slopes[layerIndex][j];
|
||||
for(std::size_t k=0;k<prevLayerSize;k++) {
|
||||
float inputValue = 0.0;
|
||||
if(layerIndex==1 && k!=0) {
|
||||
inputValue = input[k-1];
|
||||
} else {
|
||||
inputValue= prevLayer[k].output();
|
||||
}
|
||||
if(_currentBatchSize == 0) {
|
||||
_gradients[layerIndex][j][k] = update * inputValue;
|
||||
} else {
|
||||
_gradients[layerIndex][j][k] += update * inputValue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void NeuralNetwork::Learning::BatchPropagation::resize() {
|
||||
_slopes.resize(_network.size());
|
||||
|
||||
for(std::size_t i=0; i < _network.size(); i++) {
|
||||
_slopes[i].resize(_network[i].size());
|
||||
}
|
||||
|
||||
_gradients.resize(_network.size());
|
||||
|
||||
for(std::size_t i = 0; i < _network.size(); i++) {
|
||||
_gradients[i].resize(_network[i].size());
|
||||
if(i > 0) {
|
||||
for(std::size_t j = 0; j < _gradients[i].size(); j++) {
|
||||
_gradients[i][j].resize(_network[i - 1].size());
|
||||
std::fill(_gradients[i][j].begin(), _gradients[i][j].end(), 0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
@@ -1,53 +1,46 @@
|
||||
#include <NeuralNetwork/Learning/QuickPropagation.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <immintrin.h>
|
||||
void NeuralNetwork::Learning::QuickPropagation::updateWeightsAndEndBatch() {
|
||||
|
||||
void NeuralNetwork::Learning::QuickPropagation::updateWeights(const std::vector<float> &input) {
|
||||
float shrinkFactor=_maxChange/(_maxChange+1.0f);
|
||||
|
||||
float shrinkFactor=_maxChange/(_maxChange+1.0);
|
||||
for(std::size_t layerIndex=1;layerIndex<_network.size();layerIndex++) {
|
||||
auto &layer = _network[layerIndex];
|
||||
auto &prevLayer = _network[layerIndex - 1];
|
||||
|
||||
for(std::size_t layerIndex=1;layerIndex<network.size();layerIndex++) {
|
||||
auto &layer=network[layerIndex];
|
||||
auto &prevLayer=network[layerIndex-1];
|
||||
std::size_t prevLayerSize = prevLayer.size();
|
||||
std::size_t layerSize = layer.size();
|
||||
|
||||
std::size_t prevLayerSize=prevLayer.size();
|
||||
std::size_t layerSize=layer.size();
|
||||
for(std::size_t j = 1; j < layerSize; j++) {
|
||||
for(std::size_t k = 0; k < prevLayerSize; k++) {
|
||||
float newChange = 0.0f;
|
||||
float _epsilon = 0.9;
|
||||
if(fabs (_gradients[layerIndex][j][k])> 0.0001) {
|
||||
if(std::signbit(_gradients[layerIndex][j][k]) == std::signbit(_lastGradients[layerIndex][j][k])) {
|
||||
newChange+= _gradients[layerIndex][j][k]*_epsilon;
|
||||
|
||||
for(std::size_t j=1;j<layerSize;j++) {
|
||||
|
||||
float newChange=0;
|
||||
|
||||
if(fabs (deltas[layerIndex][j])> 0.0001) {
|
||||
if(std::signbit(deltas[layerIndex][j]) == std::signbit(slopes[layerIndex][j])) {
|
||||
newChange+= slopes[layerIndex][j]*_epsilon;
|
||||
|
||||
if(fabs(slopes[layerIndex][j]) > fabs(shrinkFactor * previousSlopes[layerIndex][j])) {
|
||||
newChange += _maxChange * deltas[layerIndex][j];
|
||||
}else {
|
||||
newChange+=slopes[layerIndex][j]/(previousSlopes[layerIndex][j]-slopes[layerIndex][j]) * deltas[layerIndex][j];
|
||||
if(fabs(_gradients[layerIndex][j][k]) > fabs(shrinkFactor * _lastGradients[layerIndex][j][k])) {
|
||||
newChange += _maxChange * _gradients[layerIndex][j][k];
|
||||
}else {
|
||||
newChange+=_gradients[layerIndex][j][k]/(_lastGradients[layerIndex][j][k]-_gradients[layerIndex][j][k]) * _lastDeltas[layerIndex][j][k];
|
||||
}
|
||||
} else {
|
||||
newChange+=_gradients[layerIndex][j][k]/(_lastGradients[layerIndex][j][k]-_gradients[layerIndex][j][k]) * _lastDeltas[layerIndex][j][k];
|
||||
}
|
||||
} else {
|
||||
newChange+=slopes[layerIndex][j]/(previousSlopes[layerIndex][j]-slopes[layerIndex][j]) * deltas[layerIndex][j];
|
||||
newChange+= _lastGradients[layerIndex][j][k]*_epsilon;
|
||||
}
|
||||
} else {
|
||||
newChange+= slopes[layerIndex][j]*_epsilon;
|
||||
}
|
||||
_lastDeltas[layerIndex][j][k]= newChange;
|
||||
layer[j].weight(k)+= newChange;
|
||||
|
||||
weightChange[layerIndex][j]=newChange;
|
||||
|
||||
layer[j].weight(0)+=newChange;
|
||||
|
||||
for(std::size_t k=1;k<prevLayerSize;k++) {
|
||||
if(layerIndex==1) {
|
||||
layer[j].weight(k)+=newChange*(input[k-1]);
|
||||
} else {
|
||||
layer[j].weight(k)+=newChange*(prevLayer[k].output());
|
||||
}
|
||||
/* This is according to paper?
|
||||
// delta = _gradients[layerIndex][j][k] / (_lastGradients[layerIndex][j][k]-_gradients[layerIndex][j][k]) * _lastDeltas[layerIndex][j][k];
|
||||
// delta = std::min(_maxChange,delta);
|
||||
_lastDeltas[layerIndex][j][k] = delta;
|
||||
layer[j].weight(k)+= delta;
|
||||
*/
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
slopes.swap(previousSlopes);
|
||||
weightChange.swap(deltas);
|
||||
_lastGradients.swap(_gradients);
|
||||
}
|
||||
39
src/NeuralNetwork/Learning/RProp.cpp
Normal file
39
src/NeuralNetwork/Learning/RProp.cpp
Normal file
@@ -0,0 +1,39 @@
|
||||
#include <NeuralNetwork/Learning/RProp.h>
|
||||
|
||||
void NeuralNetwork::Learning::RProp::updateWeightsAndEndBatch() {
|
||||
|
||||
for(std::size_t layerIndex=1;layerIndex<_network.size();layerIndex++) {
|
||||
auto &layer = _network[layerIndex];
|
||||
auto &prevLayer = _network[layerIndex - 1];
|
||||
|
||||
std::size_t prevLayerSize = prevLayer.size();
|
||||
std::size_t layerSize = layer.size();
|
||||
|
||||
for(std::size_t j = 1; j < layerSize; j++) {
|
||||
for(std::size_t k = 0; k < prevLayerSize; k++) {
|
||||
float gradient = _gradients[layerIndex][j][k];
|
||||
float lastGradient = _lastGradients[layerIndex][j][k];
|
||||
|
||||
_lastGradients[layerIndex][j][k] = gradient;
|
||||
|
||||
float weightChangeDelta = _lastWeightChanges[layerIndex][j][k];
|
||||
|
||||
if(gradient * lastGradient > 0) {
|
||||
weightChangeDelta = std::min(weightChangeDelta*weightChangePlus,maxChangeOfWeights);
|
||||
} else if (gradient * lastGradient < 0) {
|
||||
weightChangeDelta = std::max(weightChangeDelta*weightChangeMinus,minChangeOfWeights);
|
||||
} else {
|
||||
weightChangeDelta = _lastWeightChanges[layerIndex][j][k];
|
||||
}
|
||||
|
||||
_lastWeightChanges[layerIndex][j][k] = weightChangeDelta;
|
||||
|
||||
if(gradient > 0) {
|
||||
layer[j].weight(k) += weightChangeDelta;
|
||||
} else if (gradient < 0){
|
||||
layer[j].weight(k) -= weightChangeDelta;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
52
src/NeuralNetwork/Learning/iRPropPlus.cpp
Normal file
52
src/NeuralNetwork/Learning/iRPropPlus.cpp
Normal file
@@ -0,0 +1,52 @@
|
||||
#include <NeuralNetwork/Learning/iRPropPlus.h>
|
||||
|
||||
void NeuralNetwork::Learning::iRPropPlus::updateWeightsAndEndBatch() {
|
||||
float error = 0.0;
|
||||
const auto& outputLayer=_network[_network.size()-1];
|
||||
for(std::size_t j=1;j<outputLayer.size();j++) {
|
||||
error+=_slopes[_network.size()-1][j];
|
||||
}
|
||||
|
||||
error /= outputLayer.size();
|
||||
|
||||
for(std::size_t layerIndex=1;layerIndex<_network.size();layerIndex++) {
|
||||
auto &layer = _network[layerIndex];
|
||||
auto &prevLayer = _network[layerIndex - 1];
|
||||
|
||||
std::size_t prevLayerSize = prevLayer.size();
|
||||
std::size_t layerSize = layer.size();
|
||||
|
||||
for(std::size_t j = 1; j < layerSize; j++) {
|
||||
for(std::size_t k = 0; k < prevLayerSize; k++) {
|
||||
float gradient = _gradients[layerIndex][j][k];
|
||||
float lastGradient = _lastGradients[layerIndex][j][k];
|
||||
|
||||
_lastGradients[layerIndex][j][k] = gradient;
|
||||
|
||||
float weightChangeDelta = _changesOfWeightChanges[layerIndex][j][k];
|
||||
float delta;
|
||||
|
||||
if(gradient * lastGradient > 0) {
|
||||
weightChangeDelta = std::min(weightChangeDelta*weightChangePlus,maxChangeOfWeights);
|
||||
delta = (std::signbit(gradient)? 1.0f : -1.0f ) * weightChangeDelta;
|
||||
layer[j].weight(k) -= delta;
|
||||
} else if (gradient * lastGradient < 0) {
|
||||
weightChangeDelta = std::max(weightChangeDelta*weightChangeMinus,minChangeOfWeights);
|
||||
delta = _lastWeightChanges[layerIndex][j][k];
|
||||
if(error > _prevError) {
|
||||
layer[j].weight(k) += delta;
|
||||
}
|
||||
_lastGradients[layerIndex][j][k] = 0;
|
||||
} else {
|
||||
delta = (std::signbit(gradient)? 1.0f : -1.0f ) * weightChangeDelta;
|
||||
layer[j].weight(k) -= delta;
|
||||
}
|
||||
//std::cout << delta <<"\n";
|
||||
|
||||
_changesOfWeightChanges[layerIndex][j][k] = weightChangeDelta;
|
||||
_lastWeightChanges[layerIndex][j][k] = delta;
|
||||
}
|
||||
}
|
||||
}
|
||||
_prevError = error;
|
||||
}
|
||||
@@ -13,9 +13,6 @@ target_link_libraries(backpropagation NeuralNetwork gtest gtest_main)
|
||||
add_executable(feedforward feedforward.cpp)
|
||||
target_link_libraries(feedforward NeuralNetwork gtest gtest_main)
|
||||
|
||||
add_executable(optical_backpropagation optical_backpropagation.cpp)
|
||||
target_link_libraries(optical_backpropagation NeuralNetwork gtest gtest_main)
|
||||
|
||||
add_executable(perceptron perceptron.cpp)
|
||||
target_link_libraries(perceptron NeuralNetwork gtest gtest_main)
|
||||
|
||||
@@ -28,6 +25,9 @@ target_link_libraries(recurrent NeuralNetwork gtest gtest_main)
|
||||
add_executable(quickpropagation quickpropagation.cpp)
|
||||
target_link_libraries(quickpropagation NeuralNetwork gtest gtest_main)
|
||||
|
||||
add_executable(rprop rprop.cpp)
|
||||
target_link_libraries(rprop NeuralNetwork gtest gtest_main)
|
||||
|
||||
# PERF
|
||||
|
||||
add_executable(backpropagation_function_cmp backpropagation_function_cmp.cpp)
|
||||
|
||||
@@ -48,20 +48,6 @@ TEST(Sigmoid, ParamMinusFive) {
|
||||
ASSERT_LT(s(0.7), 0.970788);
|
||||
}
|
||||
|
||||
TEST(SigmoidSSE, ParamMinusZeroPointSeven) {
|
||||
NeuralNetwork::ActivationFunction::Sigmoid s(-0.7);
|
||||
SSE comp;
|
||||
comp.floats[0] = 0.1;
|
||||
comp.floats[1] = 10;
|
||||
comp.sse = s(comp.sse);
|
||||
|
||||
ASSERT_GT(comp.floats[0], 0.517483);
|
||||
ASSERT_LT(comp.floats[0], 0.51750);
|
||||
|
||||
ASSERT_GT(comp.floats[1], 0.998989);
|
||||
ASSERT_LT(comp.floats[1], 0.999189);
|
||||
}
|
||||
|
||||
TEST(Linear, ParamOne) {
|
||||
NeuralNetwork::ActivationFunction::Linear s(1.0);
|
||||
ASSERT_GT(s(0.5), 0.4999);
|
||||
|
||||
@@ -47,6 +47,7 @@ TEST(BackProp,XOR) {
|
||||
}
|
||||
|
||||
TEST(BackProp,XORHyperbolicTangent) {
|
||||
srand(time(NULL));
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::HyperbolicTangent a(-1);
|
||||
n.appendLayer(2,a);
|
||||
@@ -56,7 +57,7 @@ TEST(BackProp,XORHyperbolicTangent) {
|
||||
|
||||
NeuralNetwork::Learning::BackPropagation prop(n);
|
||||
|
||||
for(int i=0;i<10000;i++) {
|
||||
for(int i=0;i<1500;i++) {
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
|
||||
@@ -45,41 +45,41 @@ int main() {
|
||||
|
||||
std::cout << "\tLinear: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef) << "\n";
|
||||
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Linear>(),linearCoef) << "\n";
|
||||
|
||||
std::cout << "\tOptical: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Optical,opticalCoef) << "\n";
|
||||
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Optical>(),opticalCoef) << "\n";
|
||||
std::cout << "\tArcTangent: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::ArcTangent(arcTangent),arcTangentCoef) << "\n";
|
||||
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::ArcTangent>(arcTangent),arcTangentCoef) << "\n";
|
||||
}
|
||||
{
|
||||
std::cout << "AND:\n";
|
||||
std::cout << "\tLinear: " <<
|
||||
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef) << "\n";
|
||||
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Linear>(),linearCoef) << "\n";
|
||||
|
||||
std::cout << "\tOptical: " <<
|
||||
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Optical,opticalCoef) << "\n";
|
||||
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Optical>(),opticalCoef) << "\n";
|
||||
|
||||
std::cout << "\tArcTangent: " <<
|
||||
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::ArcTangent(arcTangent),arcTangentCoef) << "\n";
|
||||
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::ArcTangent>(arcTangent),arcTangentCoef) << "\n";
|
||||
}
|
||||
{
|
||||
std::cout << "AND:\n";
|
||||
std::cout << "\tLinear: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef) << "\n";
|
||||
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Linear>(),linearCoef) << "\n";
|
||||
|
||||
std::cout << "\tOptical: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Optical,opticalCoef) << "\n";
|
||||
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Optical>(),opticalCoef) << "\n";
|
||||
|
||||
std::cout << "\tArcTangent: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::ArcTangent(arcTangent),arcTangentCoef) << "\n";
|
||||
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::ArcTangent>(arcTangent),arcTangentCoef) << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
#include <iostream>
|
||||
#include "../include/NeuralNetwork/Learning/BackPropagation.h"
|
||||
|
||||
#include <chrono>
|
||||
int main() {
|
||||
{ // XOR problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
@@ -16,11 +17,18 @@ int main() {
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::BackPropagation prop(n);
|
||||
// prop.setBatchSize(20);
|
||||
// prop.setMomentumWeight(0.8);
|
||||
|
||||
auto start = std::chrono::system_clock::now();
|
||||
for(int i=0;i<100;i++) {
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
auto end = std::chrono::system_clock::now();
|
||||
std::chrono::duration<double> elapsed_seconds = end -start;
|
||||
std::cout << elapsed_seconds.count() << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,124 +0,0 @@
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
|
||||
#include <NeuralNetwork/Learning/OpticalBackPropagation.h>
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Weffc++"
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
|
||||
TEST(OpticalBackPropagation,XOR) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop(n);
|
||||
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(OpticalBackPropagation,AND) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop(n);
|
||||
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,1},{1});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{0});
|
||||
prop.teach({1,0},{0});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(OpticalBackPropagation,NOTAND) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop(n);
|
||||
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{1});
|
||||
prop.teach({0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
}
|
||||
@@ -4,6 +4,7 @@
|
||||
#include <iostream>
|
||||
#include "../include/NeuralNetwork/Learning/BackPropagation.h"
|
||||
#include "../include/NeuralNetwork/Learning/QuickPropagation.h"
|
||||
#include "../include/NeuralNetwork/Learning/RProp.h"
|
||||
#include "../include/NeuralNetwork/Learning/CorrectionFunction/Optical.h"
|
||||
#include "../include/NeuralNetwork/Learning/CorrectionFunction/ArcTangent.h"
|
||||
|
||||
@@ -16,7 +17,8 @@
|
||||
n.appendLayer(1,a);\
|
||||
n.randomizeWeights();\
|
||||
CLASS prop(n,FUN);\
|
||||
prop.setLearningCoefficient(COEF);\
|
||||
prop.setLearningCoefficient(COEF);\
|
||||
prop.setBatchSize(4); \
|
||||
int error=1; int steps = 0; \
|
||||
while(error > 0 && steps <99999) {\
|
||||
steps++;\
|
||||
@@ -42,36 +44,47 @@ int main() {
|
||||
const float arcTangent=1.5;
|
||||
|
||||
{
|
||||
std::cout << "XOR:\n";
|
||||
std::cout << "XOR Linear:\n";
|
||||
|
||||
std::cout << "\tBP: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef,NeuralNetwork::Learning::BackPropagation) << "\n";
|
||||
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Linear>(),linearCoef,NeuralNetwork::Learning::BackPropagation) << "\n";
|
||||
std::cout << "\tQP: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef,NeuralNetwork::Learning::QuickPropagation) << "\n";
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
||||
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Linear>(),linearCoef,NeuralNetwork::Learning::QuickPropagation) << "\n";
|
||||
std::cout << "\tRProp: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
||||
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Linear>(),linearCoef,NeuralNetwork::Learning::RProp) << "\n";
|
||||
|
||||
}
|
||||
{
|
||||
std::cout << "AND:\n";
|
||||
std::cout << "AND Optical:\n";
|
||||
|
||||
std::cout << "\tBP: " <<
|
||||
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef,NeuralNetwork::Learning::BackPropagation) << "\n";
|
||||
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Optical>(),opticalCoef,NeuralNetwork::Learning::BackPropagation) << "\n";
|
||||
|
||||
std::cout << "\tQP: " <<
|
||||
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Optical,opticalCoef,NeuralNetwork::Learning::QuickPropagation) << "\n";
|
||||
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
||||
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Optical>(),opticalCoef,NeuralNetwork::Learning::QuickPropagation) << "\n";
|
||||
|
||||
std::cout << "\tRProp: " <<
|
||||
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
||||
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Optical>(),opticalCoef,NeuralNetwork::Learning::RProp) << "\n";
|
||||
}
|
||||
{
|
||||
std::cout << "AND:\n";
|
||||
std::cout << "XOR Optical:\n";
|
||||
|
||||
std::cout << "\tBP: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef,NeuralNetwork::Learning::BackPropagation) << "\n";
|
||||
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Optical>(),opticalCoef,NeuralNetwork::Learning::BackPropagation) << "\n";
|
||||
|
||||
std::cout << "\tQP: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Optical,opticalCoef,NeuralNetwork::Learning::QuickPropagation) << "\n";
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
||||
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Optical>(),opticalCoef,NeuralNetwork::Learning::QuickPropagation) << "\n";
|
||||
|
||||
std::cout << "\tRProp: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
||||
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Optical>(),opticalCoef,NeuralNetwork::Learning::RProp) << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
165
tests/rprop.cpp
Normal file
165
tests/rprop.cpp
Normal file
@@ -0,0 +1,165 @@
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
#include <NeuralNetwork/Learning/RProp.h>
|
||||
#include <NeuralNetwork/ActivationFunction/HyperbolicTangent.h>
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Weffc++"
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
TEST(RProp,XOR) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(3,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::RProp prop(n);
|
||||
prop.setBatchSize(4);
|
||||
|
||||
for(int i=0;i<100;i++) {
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(RProp,XORHyperbolicTangent) {
|
||||
srand(time(NULL));
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::HyperbolicTangent a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::RProp prop(n);
|
||||
prop.setBatchSize(4);
|
||||
|
||||
for(int i=0;i<15000;i++) {
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(RProp,AND) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::RProp prop(n);
|
||||
prop.setBatchSize(4);
|
||||
|
||||
for(int i=0;i<100000;i++) {
|
||||
prop.teach({1,1},{1});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{0});
|
||||
prop.teach({1,0},{0});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(RProp,NOTAND) {
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::RProp prop(n);
|
||||
prop.setBatchSize(4);
|
||||
|
||||
for(int i=0;i<100000;i++) {
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{1});
|
||||
prop.teach({0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
ASSERT_LT(ret[0], 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
ASSERT_GT(ret[0], 0.9);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user