new weights interface and addaption + mall tweaks
This commit is contained in:
@@ -36,17 +36,28 @@ namespace NeuralNetwork
|
||||
virtual std::string stringify(const std::string &prefix="") const =0;
|
||||
|
||||
/**
|
||||
* @brief Gets weight
|
||||
* @brief Returns weight
|
||||
* @param n is neuron
|
||||
*/
|
||||
virtual float getWeight(const NeuronInterface &n) const =0;
|
||||
virtual float weight(const NeuronInterface &n) const =0;
|
||||
|
||||
/**
|
||||
* @brief Sets weight
|
||||
* @param n is neuron
|
||||
* @param w is new weight for input neuron n
|
||||
* @brief Returns weight
|
||||
* @param n is id of neuron
|
||||
*/
|
||||
virtual void setWeight(const NeuronInterface& n ,const float &w) =0;
|
||||
virtual float weight(const std::size_t &n) const =0;
|
||||
|
||||
/**
|
||||
* @brief Returns reference to weight
|
||||
* @param n is neuron
|
||||
*/
|
||||
virtual float& weight(const NeuronInterface &n) =0;
|
||||
|
||||
/**
|
||||
* @brief Returns reference to weight
|
||||
* @param n is id of neuron
|
||||
*/
|
||||
virtual float& weight(const std::size_t &n) =0;
|
||||
|
||||
/**
|
||||
* @brief Returns output of neuron
|
||||
@@ -58,11 +69,6 @@ namespace NeuralNetwork
|
||||
*/
|
||||
virtual float value() const=0;
|
||||
|
||||
/**
|
||||
* @brief Returns value for derivation of activation function
|
||||
*/
|
||||
// virtual float derivatedOutput() const=0;
|
||||
|
||||
/**
|
||||
* @brief Function sets bias for neuron
|
||||
* @param bias is new bias (initial value for neuron)
|
||||
@@ -102,12 +108,12 @@ namespace NeuralNetwork
|
||||
{
|
||||
public:
|
||||
Neuron(unsigned long _id=0, const ActivationFunction::ActivationFunction &activationFunction=ActivationFunction::Sigmoid(-4.9)):
|
||||
NeuronInterface(), basis(new BasisFunction::Linear),
|
||||
NeuronInterface(), id_(_id), basis(new BasisFunction::Linear),
|
||||
activation(activationFunction.clone()),
|
||||
id_(_id),weights(1),_output(0),_value(0) {
|
||||
weights(1),_output(0),_value(0) {
|
||||
}
|
||||
|
||||
Neuron(const Neuron &r): NeuronInterface(), basis(r.basis->clone()), activation(r.activation->clone()),id_(r.id_),
|
||||
Neuron(const Neuron &r): NeuronInterface(), id_(r.id_), basis(r.basis->clone()), activation(r.activation->clone()),
|
||||
weights(r.weights), _output(r._output), _value(r._value) {
|
||||
}
|
||||
|
||||
@@ -116,38 +122,28 @@ namespace NeuralNetwork
|
||||
delete activation;
|
||||
};
|
||||
|
||||
virtual std::string stringify(const std::string &prefix="") const override;
|
||||
Neuron operator=(const Neuron&) = delete;
|
||||
|
||||
Neuron& operator=(const Neuron&r) {
|
||||
id_=r.id_;
|
||||
weights=r.weights;
|
||||
basis=r.basis->clone();
|
||||
activation=r.activation->clone();
|
||||
return *this;
|
||||
}
|
||||
virtual std::string stringify(const std::string &prefix="") const override;
|
||||
|
||||
virtual long unsigned int id() const override {
|
||||
return id_;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Gets weight
|
||||
* @param n is neuron
|
||||
*/
|
||||
virtual float getWeight(const NeuronInterface &n) const override {
|
||||
virtual float weight(const NeuronInterface &n) const override {
|
||||
return weights[n.id()];
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Sets weight
|
||||
* @param n is neuron
|
||||
* @param w is new weight for input neuron n
|
||||
*/
|
||||
virtual void setWeight(const NeuronInterface& n ,const float &w) override {
|
||||
if(weights.size()<n.id()+1) {
|
||||
weights.resize(n.id()+1);
|
||||
}
|
||||
weights[n.id()]=w;
|
||||
virtual float weight(const std::size_t &n) const override {
|
||||
return weights[n];
|
||||
}
|
||||
|
||||
virtual float& weight(const NeuronInterface &n) override {
|
||||
return weights[n.id()];
|
||||
}
|
||||
|
||||
virtual float& weight(const std::size_t &n) override {
|
||||
return weights[n];
|
||||
}
|
||||
|
||||
virtual void setInputSize(const std::size_t &size) override {
|
||||
@@ -196,8 +192,7 @@ namespace NeuralNetwork
|
||||
}
|
||||
|
||||
virtual Neuron* clone() const override {
|
||||
Neuron *n = new Neuron;
|
||||
*n=*this;
|
||||
Neuron *n = new Neuron(*this);
|
||||
return n;
|
||||
}
|
||||
|
||||
@@ -209,12 +204,12 @@ namespace NeuralNetwork
|
||||
return *activation;
|
||||
}
|
||||
|
||||
const unsigned long id_;
|
||||
protected:
|
||||
|
||||
BasisFunction::BasisFunction *basis;
|
||||
ActivationFunction::ActivationFunction *activation;
|
||||
|
||||
unsigned long id_;
|
||||
std::vector<float> weights;
|
||||
|
||||
float _output;
|
||||
@@ -238,14 +233,16 @@ namespace NeuralNetwork
|
||||
|
||||
virtual float getBias() const override { return 0; };
|
||||
|
||||
virtual float getWeight(const NeuronInterface&) const override { return 0; }
|
||||
float a=0.0;
|
||||
virtual float& weight(const NeuronInterface &) override { return a; }
|
||||
virtual float& weight(const std::size_t &) override { return a; }
|
||||
virtual float weight(const NeuronInterface&) const override { return 0; }
|
||||
virtual float weight(const std::size_t&) const override { return 0; }
|
||||
|
||||
virtual void setBias(const float&) override{ }
|
||||
|
||||
virtual float output() const override { return 1.0; };
|
||||
|
||||
virtual void setWeight(const NeuronInterface&, const float&) override { }
|
||||
|
||||
virtual std::string stringify(const std::string& prefix = "") const override { return prefix+"{ \"class\" : \"NeuralNetwork::BiasNeuron\" }"; }
|
||||
|
||||
virtual float value() const override { return 1.0; }
|
||||
@@ -290,14 +287,16 @@ namespace NeuralNetwork
|
||||
|
||||
virtual float getBias() const override { return 0; };
|
||||
|
||||
virtual float getWeight(const NeuronInterface&) const override { return 0; }
|
||||
float a=0.0;
|
||||
virtual float& weight(const NeuronInterface &) override { return a; }
|
||||
virtual float& weight(const std::size_t &) override { return a; }
|
||||
virtual float weight(const NeuronInterface&) const override { return 0; }
|
||||
virtual float weight(const std::size_t&) const override { return 0; }
|
||||
|
||||
virtual void setBias(const float&) override{ }
|
||||
|
||||
virtual float output() const override { return 1.0; };
|
||||
|
||||
virtual void setWeight(const NeuronInterface&, const float&) override { }
|
||||
|
||||
virtual std::string stringify(const std::string& prefix = "") const override { return prefix+"{ \"class\" : \"NeuralNetwork::InputNeuron\", \"id\": "+std::to_string(id_)+" }"; }
|
||||
|
||||
virtual float value() const override { return 1.0; }
|
||||
|
||||
@@ -24,7 +24,7 @@ namespace Recurrent {
|
||||
* @param _outputSize is size of output from network
|
||||
* @param hiddenUnits is number of hiddenUnits to be created
|
||||
*/
|
||||
inline Network(size_t _inputSize, size_t _outputSize,size_t hiddenUnits=0):NeuralNetwork::Network(),inputSize(_inputSize),outputSize(_outputSize), neurons(0) {
|
||||
inline Network(size_t _inputSize, size_t _outputSize,size_t hiddenUnits=0):NeuralNetwork::Network(),inputSize(_inputSize),outputSize(_outputSize), neurons(0),outputs(0) {
|
||||
neurons.push_back(new NeuralNetwork::BiasNeuron());
|
||||
|
||||
for(size_t i=0;i<_inputSize;i++) {
|
||||
@@ -78,7 +78,7 @@ namespace Recurrent {
|
||||
neurons.push_back(new Neuron(neurons.size()));
|
||||
NeuronInterface *newNeuron=neurons.back();
|
||||
for(std::size_t i=0;i<neurons.size();i++) {
|
||||
neurons[i]->setWeight(*newNeuron,0.0);
|
||||
neurons[i]->setInputSize(newNeuron->id()+1);
|
||||
}
|
||||
return *newNeuron;
|
||||
}
|
||||
@@ -95,6 +95,7 @@ namespace Recurrent {
|
||||
size_t outputSize=0;
|
||||
|
||||
std::vector<NeuronInterface*> neurons;
|
||||
std::vector<float> outputs;
|
||||
};
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user