#pragma once #include #include "./StreamingActivationFunction.h" #include "../../sse_mathfun.h" namespace NeuralNetwork { namespace ActivationFunction { /** * @author Tomas Cernik (Tom.Cernik@gmail.com) * @brief Class for computing sigmoid */ class Sigmoid: public StreamingActivationFunction { public: Sigmoid(const float lambdaP = -0.5): lambda(lambdaP) {} inline virtual float derivatedOutput(const float &, const float &output) const override { return -lambda*output*(1.0f-output); } inline virtual float operator()(const float &x) const override { return 1.0f / (1.0f +exp(lambda*x) ); }; inline virtual __m128 operator()(const __m128 &x) const override { // exp_ps is extremly slow! return _mm_div_ps(_mm_set1_ps(1.0),_mm_add_ps(exp_ps(_mm_mul_ps(_mm_set1_ps(lambda),x)),_mm_set1_ps(1.0))); } virtual ActivationFunction* clone() const override { return new Sigmoid(lambda); } virtual SimpleJSON::Type::Object serialize() const override { return {{"class", "NeuralNetwork::ActivationFunction::Sigmoid"}, {"lambda", lambda}}; } static std::unique_ptr deserialize(const SimpleJSON::Type::Object &obj) { return std::unique_ptr(new Sigmoid(obj["lambda"].as())); } protected: float lambda; NEURAL_NETWORK_REGISTER_ACTIVATION_FUNCTION(NeuralNetwork::ActivationFunction::Sigmoid, Sigmoid::deserialize) }; } }