Files
NeuralNetworkLib/tests/feedforward.cpp
2016-05-08 12:08:35 +02:00

92 lines
2.1 KiB
C++

#include <NeuralNetwork/FeedForward/Network.h>
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Weffc++"
#include <gtest/gtest.h>
#pragma GCC diagnostic pop
TEST(FeedForward, XOR) {
NeuralNetwork::FeedForward::Network n(2);
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
NeuralNetwork::FeedForward::Layer &hidden=n.appendLayer(2,a);
NeuralNetwork::FeedForward::Layer &out = n.appendLayer(1,a);
hidden[1].weight(n[0][0])=7;
hidden[1].weight(n[0][1])=-4.7;
hidden[1].weight(n[0][2])=-4.7;
hidden[2].weight(n[0][0])=2.6;
hidden[2].weight(n[0][1])=-6.4;
hidden[2].weight(n[0][2])=-6.4;
out[1].weight(hidden[0])=-4.5;
out[1].weight(hidden[1])=9.6;
out[1].weight(hidden[2])=-6.8;
{
std::vector<float> ret =n.computeOutput({1,1});
ASSERT_LT(ret[0], 0.5);
}
{
std::vector<float> ret =n.computeOutput({0,1});
ASSERT_GT(ret[0], 0.5);
}
{
std::vector<float> ret =n.computeOutput({1,0});
ASSERT_GT(ret[0], 0.5);
}
{
std::vector<float> ret =n.computeOutput({0,0});
ASSERT_LT(ret[0], 0.5);
}
}
TEST(FeedForward, Serialization) {
NeuralNetwork::FeedForward::Network n(2);
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
NeuralNetwork::FeedForward::Layer &hidden=n.appendLayer(2,a);
NeuralNetwork::FeedForward::Layer &out = n.appendLayer(1,a);
hidden[1].weight(n[0][0])=7;
hidden[1].weight(n[0][1])=-4.7;
hidden[1].weight(n[0][2])=-4.7;
hidden[2].weight(n[0][0])=2.6;
hidden[2].weight(n[0][1])=-6.4;
hidden[2].weight(n[0][2])=-6.4;
out[1].weight(hidden[0])=-4.5;
out[1].weight(hidden[1])=9.6;
out[1].weight(hidden[2])=-6.8;
std::string serialized = n.serialize().serialize();
NeuralNetwork::FeedForward::Network *deserialized=NeuralNetwork::FeedForward::Network::Factory::deserialize(serialized).release();
{
std::vector<float> ret =deserialized->computeOutput({1,1});
ASSERT_LT(ret[0], 0.5);
}
{
std::vector<float> ret =deserialized->computeOutput({0,1});
ASSERT_GT(ret[0], 0.5);
}
{
std::vector<float> ret =deserialized->computeOutput({1,0});
ASSERT_GT(ret[0], 0.5);
}
{
std::vector<float> ret =deserialized->computeOutput({0,0});
ASSERT_LT(ret[0], 0.5);
}
delete deserialized;
}