48 lines
990 B
C++
48 lines
990 B
C++
#include <NeuralNetwork/FeedForward/Network.h>
|
|
|
|
#include <cassert>
|
|
#include <iostream>
|
|
|
|
int main() {
|
|
{ // XOR problem
|
|
NeuralNetwork::FeedForward::Network n(2);
|
|
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
|
NeuralNetwork::FeedForward::Layer &hidden=n.appendLayer(2,a);
|
|
NeuralNetwork::FeedForward::Layer &out = n.appendLayer(1,a);
|
|
|
|
hidden[1].weight(n[0][0])=7;
|
|
hidden[1].weight(n[0][1])=-4.7;
|
|
hidden[1].weight(n[0][2])=-4.7;
|
|
|
|
hidden[2].weight(n[0][0])=2.6;
|
|
hidden[2].weight(n[0][1])=-6.4;
|
|
hidden[2].weight(n[0][2])=-6.4;
|
|
|
|
out[1].weight(hidden[0])=-4.5;
|
|
out[1].weight(hidden[1])=9.6;
|
|
out[1].weight(hidden[2])=-6.8;
|
|
|
|
|
|
{
|
|
std::vector<float> ret =n.computeOutput({1,1});
|
|
assert(ret[0] < 0.5);
|
|
}
|
|
|
|
{
|
|
std::vector<float> ret =n.computeOutput({0,1});
|
|
assert(ret[0] > 0.5);
|
|
}
|
|
|
|
{
|
|
std::vector<float> ret =n.computeOutput({1,0});
|
|
assert(ret[0] > 0.5);
|
|
}
|
|
|
|
{
|
|
std::vector<float> ret =n.computeOutput({0,0});
|
|
assert(ret[0] < 0.5);
|
|
}
|
|
}
|
|
}
|
|
|