57 lines
1.4 KiB
C++
57 lines
1.4 KiB
C++
#pragma once
|
|
|
|
#include <vector>
|
|
#include <cmath>
|
|
|
|
#include <NeuralNetwork/FeedForward/Network.h>
|
|
#include "CorrectionFunction/Linear.h"
|
|
|
|
namespace NeuralNetwork {
|
|
namespace Learning {
|
|
|
|
/** @class BackPropagation
|
|
* @brief
|
|
*/
|
|
class BackPropagation {
|
|
|
|
public:
|
|
inline BackPropagation(FeedForward::Network &feedForwardNetwork, CorrectionFunction::CorrectionFunction *correction = new CorrectionFunction::Linear()):
|
|
network(feedForwardNetwork), correctionFunction(correction),learningCoefficient(0.4), deltas() {
|
|
resize();
|
|
}
|
|
|
|
virtual ~BackPropagation() {
|
|
delete correctionFunction;
|
|
}
|
|
|
|
BackPropagation(const BackPropagation&)=delete;
|
|
BackPropagation& operator=(const NeuralNetwork::Learning::BackPropagation&) = delete;
|
|
|
|
void teach(const std::vector<float> &input, const std::vector<float> &output);
|
|
|
|
inline virtual void setLearningCoefficient (const float& coefficient) { learningCoefficient=coefficient; }
|
|
|
|
protected:
|
|
|
|
virtual inline void resize() {
|
|
if(deltas.size()!=network.size())
|
|
deltas.resize(network.size());
|
|
|
|
for(std::size_t i=0; i < network.size(); i++) {
|
|
if(deltas[i].size()!=network[i].size())
|
|
deltas[i].resize(network[i].size());
|
|
}
|
|
}
|
|
|
|
virtual void updateWeights(const std::vector<float> &input);
|
|
|
|
FeedForward::Network &network;
|
|
|
|
CorrectionFunction::CorrectionFunction *correctionFunction;
|
|
|
|
float learningCoefficient;
|
|
|
|
std::vector<std::vector<float>> deltas;
|
|
};
|
|
}
|
|
} |