Files
NeuralNetworkLib/include/NeuralNetwork/Learning/BackPropagation.h
2016-02-24 20:23:16 +01:00

57 lines
1.4 KiB
C++

#pragma once
#include <vector>
#include <cmath>
#include <NeuralNetwork/FeedForward/Network.h>
#include "CorrectionFunction/Linear.h"
namespace NeuralNetwork {
namespace Learning {
/** @class BackPropagation
* @brief
*/
class BackPropagation {
public:
inline BackPropagation(FeedForward::Network &feedForwardNetwork, CorrectionFunction::CorrectionFunction *correction = new CorrectionFunction::Linear()):
network(feedForwardNetwork), correctionFunction(correction),learningCoefficient(0.4), deltas() {
resize();
}
virtual ~BackPropagation() {
delete correctionFunction;
}
BackPropagation(const BackPropagation&)=delete;
BackPropagation& operator=(const NeuralNetwork::Learning::BackPropagation&) = delete;
void teach(const std::vector<float> &input, const std::vector<float> &output);
inline virtual void setLearningCoefficient (const float& coefficient) { learningCoefficient=coefficient; }
protected:
virtual inline void resize() {
if(deltas.size()!=network.size())
deltas.resize(network.size());
for(std::size_t i=0; i < network.size(); i++) {
if(deltas[i].size()!=network[i].size())
deltas[i].resize(network[i].size());
}
}
virtual void updateWeights(const std::vector<float> &input);
FeedForward::Network &network;
CorrectionFunction::CorrectionFunction *correctionFunction;
float learningCoefficient;
std::vector<std::vector<float>> deltas;
};
}
}