Files
NeuralNetworkLib/tests/quickpropagation.cpp
2016-02-24 20:23:16 +01:00

117 lines
2.3 KiB
C++

#include <NeuralNetwork/FeedForward/Network.h>
#include <cassert>
#include <iostream>
#include "../include/NeuralNetwork/Learning/QuickPropagation.h"
int main() {
{ // XOR problem
NeuralNetwork::FeedForward::Network n(2);
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
n.appendLayer(2,a);
n.appendLayer(1,a);
n.randomizeWeights();
NeuralNetwork::Learning::QuickPropagation prop(n);
for(int i=0;i<10000;i++) {
prop.teach({1,0},{1});
prop.teach({1,1},{0});
prop.teach({0,0},{0});
prop.teach({0,1},{1});
}
{
std::vector<float> ret =n.computeOutput({1,1});
assert(ret[0] < 0.1);
}
{
std::vector<float> ret =n.computeOutput({0,1});
assert(ret[0] > 0.9);
}
{
std::vector<float> ret =n.computeOutput({1,0});
assert(ret[0] > 0.9);
}
{
std::vector<float> ret =n.computeOutput({0,0});
assert(ret[0] < 0.1);
}
}
{ // AND problem
NeuralNetwork::FeedForward::Network n(2);
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
n.appendLayer(2,a);
n.appendLayer(1,a);
n.randomizeWeights();
NeuralNetwork::Learning::QuickPropagation prop(n);
for(int i=0;i<10000;i++) {
prop.teach({1,1},{1});
prop.teach({0,0},{0});
prop.teach({0,1},{0});
prop.teach({1,0},{0});
}
{
std::vector<float> ret =n.computeOutput({1,1});
assert(ret[0] > 0.9);
}
{
std::vector<float> ret =n.computeOutput({0,1});
assert(ret[0] < 0.1);
}
{
std::vector<float> ret =n.computeOutput({1,0});
assert(ret[0] < 0.1);
}
{
std::vector<float> ret =n.computeOutput({0,0});
assert(ret[0] < 0.1);
}
}
{ // NOT AND problem
NeuralNetwork::FeedForward::Network n(2);
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
n.appendLayer(2,a);
n.appendLayer(1,a);
n.randomizeWeights();
NeuralNetwork::Learning::QuickPropagation prop(n);
for(int i=0;i<10000;i++) {
prop.teach({1,1},{0});
prop.teach({0,0},{1});
prop.teach({0,1},{1});
prop.teach({1,0},{1});
}
{
std::vector<float> ret =n.computeOutput({1,1});
assert(ret[0] < 0.1);
}
{
std::vector<float> ret =n.computeOutput({0,1});
assert(ret[0] > 0.9);
}
{
std::vector<float> ret =n.computeOutput({1,0});
assert(ret[0] > 0.9);
}
{
std::vector<float> ret =n.computeOutput({0,0});
assert(ret[0] > 0.9);
}
}
}