Files
NeuralNetworkLib/tests/quickpropagation.cpp
2016-05-08 12:08:35 +02:00

161 lines
3.1 KiB
C++

#include <NeuralNetwork/FeedForward/Network.h>
#include <NeuralNetwork/Learning/QuickPropagation.h>
#include <NeuralNetwork/ActivationFunction/HyperbolicTangent.h>
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Weffc++"
#include <gtest/gtest.h>
#pragma GCC diagnostic pop
TEST(QuickPropagation,XOR) {
NeuralNetwork::FeedForward::Network n(2);
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
n.appendLayer(10,a);
n.appendLayer(1,a);
n.randomizeWeights();
NeuralNetwork::Learning::QuickPropagation prop(n);
for(int i=0;i<400;i++) {
prop.teach({1,0},{1});
prop.teach({1,1},{0});
prop.teach({0,0},{0});
prop.teach({0,1},{1});
}
{
std::vector<float> ret =n.computeOutput({1,1});
ASSERT_LT(ret[0], 0.1);
}
{
std::vector<float> ret =n.computeOutput({0,1});
ASSERT_GT(ret[0], 0.9);
}
{
std::vector<float> ret =n.computeOutput({1,0});
ASSERT_GT(ret[0], 0.9);
}
{
std::vector<float> ret =n.computeOutput({0,0});
ASSERT_LT(ret[0], 0.1);
}
}
TEST(QuickPropagation,AND) {
NeuralNetwork::FeedForward::Network n(2);
NeuralNetwork::ActivationFunction::Sigmoid a(1.0);
n.appendLayer(2,a);
n.appendLayer(1,a);
n.randomizeWeights();
NeuralNetwork::Learning::QuickPropagation prop(n);
for(int i=0;i<400;i++) {
prop.teach({1,1},{1});
prop.teach({1,0},{0});
prop.teach({0,0},{0});
prop.teach({0,1},{0});
}
{
std::vector<float> ret =n.computeOutput({1,1});
ASSERT_GT(ret[0], 0.9);
}
{
std::vector<float> ret =n.computeOutput({0,1});
ASSERT_LT(ret[0], 0.1);
}
{
std::vector<float> ret =n.computeOutput({1,0});
ASSERT_LT(ret[0], 0.1);
}
{
std::vector<float> ret =n.computeOutput({0,0});
ASSERT_LT(ret[0], 0.1);
}
}
TEST(QuickPropagation,NOTAND) {
NeuralNetwork::FeedForward::Network n(2);
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
n.appendLayer(2,a);
n.appendLayer(1,a);
n.randomizeWeights();
NeuralNetwork::Learning::QuickPropagation prop(n);
for(int i=0;i<10000;i++) {
prop.teach({1,1},{0});
prop.teach({0,0},{1});
prop.teach({0,1},{1});
prop.teach({1,0},{1});
}
{
std::vector<float> ret =n.computeOutput({1,1});
ASSERT_LT(ret[0], 0.1);
}
{
std::vector<float> ret =n.computeOutput({0,1});
ASSERT_GT(ret[0], 0.9);
}
{
std::vector<float> ret =n.computeOutput({1,0});
ASSERT_GT(ret[0], 0.9);
}
{
std::vector<float> ret =n.computeOutput({0,0});
ASSERT_GT(ret[0], 0.9);
}
}
TEST(QuickPropagation,NOTANDHyperbolicTangent) {
NeuralNetwork::FeedForward::Network n(2);
NeuralNetwork::ActivationFunction::HyperbolicTangent a(1);
n.appendLayer(2,a);
n.appendLayer(1,a);
n.randomizeWeights();
NeuralNetwork::Learning::QuickPropagation prop(n);
for(int i=0;i<10000;i++) {
prop.teach({1,1},{-1});
prop.teach({-1,0},{1});
prop.teach({-1,1},{1});
prop.teach({1,-1},{1});
}
{
std::vector<float> ret =n.computeOutput({1,1});
ASSERT_LT(ret[0], 0.1);
}
{
std::vector<float> ret =n.computeOutput({-1,1});
ASSERT_GT(ret[0], 0.9);
}
{
std::vector<float> ret =n.computeOutput({1,-1});
ASSERT_GT(ret[0], 0.9);
}
{
std::vector<float> ret =n.computeOutput({-1,-1});
ASSERT_GT(ret[0], 0.9);
}
}