Files
NeuralNetworkLib/include/NeuralNetwork/Neuron.h
2016-10-31 15:03:27 +01:00

293 lines
7.9 KiB
C++

#pragma once
#include <NeuralNetwork/ActivationFunction/Sigmoid.h>
#include <NeuralNetwork/BasisFunction/Linear.h>
#include <string>
#include <vector>
#include <limits>
namespace NeuralNetwork
{
/**
* @author Tomas Cernik (Tom.Cernik@gmail.com)
* @brief Abstract class of neuron. All Neuron classes should derive from this on
*/
class NeuronInterface : public SimpleJSON::SerializableObject {
public:
NeuronInterface(const unsigned long &_id=0): id(_id), weights(1),_output(1),
_value(0) {
}
NeuronInterface(const NeuronInterface &r): id(r.id), weights(r.weights),_output(r._output),
_value(r._value) {
weights=weights;
}
/**
* @brief virtual destructor for Neuron
*/
virtual ~NeuronInterface() {};
const std::vector<float> & getWeights() const {
return weights;
}
void setWeights(const std::vector<float> &weights_) {
weights=weights_;
}
/**
* @brief getter for neuron weight
* @param &neuron is neuron it's weight is returned
*/
inline virtual float weight(const NeuronInterface &neuron) const final {
return weights[neuron.id];
}
/**
* @brief getter for neuron weight
* @param &neuronID is id of neuron
*/
inline virtual float weight(const std::size_t &neuronID) const final {
return weights[neuronID];
}
/**
* @brief This is a virtual function for storing network
* @returns json describing network and it's state
*/
inline virtual float& weight(const NeuronInterface &neuron) final {
return weights[neuron.id];
}
/**
* @brief getter for neuron weight
* @param neuronID is id of neuron
*/
inline virtual float& weight(const std::size_t &neuronID) final {
return weights[neuronID];
}
/**
* @brief Returns output of neuron
*/
inline virtual float output() const final {
return _output;
}
/**
* @brief Returns input of neuron
*/
inline virtual float value() const final {
return _value;
};
virtual float operator()(const std::vector<float>& inputs) =0;
/**
* @brief function resizes weighs to desired size
*/
inline virtual void setInputSize(const std::size_t &size) final {
if(weights.size()<size) {
weights.resize(size);
}
}
/**
* @brief Function returns clone of object
*/
virtual NeuronInterface* clone() const = 0;
/**
* @brief getter for basis function of neuron
*/
virtual BasisFunction::BasisFunction& getBasisFunction() =0;
/**
* @brief getter for activation function of neuron
*/
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const =0;
virtual void setBasisFunction(const BasisFunction::BasisFunction& basisFunction) =0;
virtual void setActivationFunction(const ActivationFunction::ActivationFunction &activationFunction) =0;
/**
* @brief id is identificator if neuron
*/
const unsigned long id;
typedef SimpleJSON::Factory<NeuronInterface> Factory;
protected:
std::vector<float> weights;
float _output;
float _value;
};
/**
* @author Tomas Cernik (Tom.Cernik@gmail.com)
* @brief Class of FeedForward neuron.
*/
class Neuron: public NeuronInterface {
public:
Neuron(unsigned long _id=0, const ActivationFunction::ActivationFunction &activationFunction=ActivationFunction::Sigmoid(-4.9)):
NeuronInterface(_id), basis(new BasisFunction::Linear),
activation(activationFunction.clone()) {
_output=0.0;
}
Neuron(const Neuron &r): NeuronInterface(r), basis(r.basis->clone().release()), activation(r.activation->clone()) {
}
virtual ~Neuron() {
delete basis;
delete activation;
};
Neuron operator=(const Neuron&) = delete;
float operator()(const std::vector<float>& inputs) {
//compute value
_value=basis->operator()(weights,inputs);
//compute output
_output=activation->operator()(_value);
return _output;
}
virtual Neuron* clone() const override {
Neuron *n = new Neuron(*this);
return n;
}
virtual BasisFunction::BasisFunction& getBasisFunction() override {
return *basis;
}
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const override {
return *activation;
}
virtual void setBasisFunction(const BasisFunction::BasisFunction& basisFunction) override {
delete basis;
basis=basisFunction.clone().release();
}
virtual void setActivationFunction(const ActivationFunction::ActivationFunction &activationFunction) override {
delete activation;
activation=activationFunction.clone();
}
virtual SimpleJSON::Type::Object serialize() const override;
static std::unique_ptr<Neuron> deserialize(const SimpleJSON::Type::Object &obj);
protected:
BasisFunction::BasisFunction *basis;
ActivationFunction::ActivationFunction *activation;
SIMPLEJSON_REGISTER(NeuralNetwork::NeuronInterface::Factory, NeuralNetwork::Neuron,NeuralNetwork::Neuron::deserialize)
};
class BiasNeuron: public NeuronInterface {
public:
class usageException : public std::exception {
public:
usageException(const std::string &text_):text(text_) {
}
virtual const char* what() const noexcept override {
return text.c_str();
}
protected:
std::string text;
};
virtual float operator()(const std::vector< float >&) override { return 1.0; }
virtual BiasNeuron* clone() const { return new BiasNeuron(); }
virtual BasisFunction::BasisFunction& getBasisFunction() override {
throw usageException("basis function");
}
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const override {
throw usageException("biasNeuron - activation function");
}
virtual void setBasisFunction(const BasisFunction::BasisFunction&) override {
throw usageException("basis function");
}
virtual void setActivationFunction(const ActivationFunction::ActivationFunction &) override {
throw usageException("activation function");
}
virtual SimpleJSON::Type::Object serialize() const override {
return {{"class", "NeuralNetwork::BiasNeuron"}};
}
static std::unique_ptr<BiasNeuron> deserialize(const SimpleJSON::Type::Object &) {
return std::unique_ptr<BiasNeuron>(new BiasNeuron());
}
SIMPLEJSON_REGISTER(NeuralNetwork::NeuronInterface::Factory, NeuralNetwork::BiasNeuron,NeuralNetwork::BiasNeuron::deserialize)
};
class InputNeuron: public NeuronInterface {
public:
class usageException : public std::exception {
public:
usageException(const std::string &text_):text(text_) {
}
virtual const char* what() const noexcept override {
return text.c_str();
}
protected:
std::string text;
};
InputNeuron(long unsigned int _id): NeuronInterface(_id) {
}
virtual float operator()(const std::vector< float >&) override { return 1.0; }
virtual InputNeuron* clone() const { return new InputNeuron(id); }
virtual BasisFunction::BasisFunction& getBasisFunction() override {
throw usageException("basis function");
}
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const override {
throw usageException("input neuron - activation function");
}
virtual void setBasisFunction(const BasisFunction::BasisFunction&) override {
throw usageException("basis function");
}
virtual void setActivationFunction(const ActivationFunction::ActivationFunction &) override {
throw usageException("activation function");
}
virtual SimpleJSON::Type::Object serialize() const override {
return {{"class", "NeuralNetwork::InputNeuron"}, {"id", id}};
}
static std::unique_ptr<NeuronInterface> deserialize(const SimpleJSON::Type::Object &obj) {
return std::unique_ptr<NeuronInterface>(new InputNeuron(obj["id"].as<int>()));
}
SIMPLEJSON_REGISTER(NeuralNetwork::NeuronInterface::Factory, NeuralNetwork::InputNeuron,NeuralNetwork::InputNeuron::deserialize)
};
}