48 lines
1017 B
C++
48 lines
1017 B
C++
#include <NeuralNetwork/FeedForward/Network.h>
|
|
|
|
#include <cassert>
|
|
#include <iostream>
|
|
|
|
int main() {
|
|
{ // XOR problem
|
|
NeuralNetwork::FeedForward::Network n(2);
|
|
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
|
NeuralNetwork::FeedForward::Layer &hidden=n.appendLayer(2,a);
|
|
NeuralNetwork::FeedForward::Layer &out = n.appendLayer(1,a);
|
|
|
|
hidden[1].setWeight(n[0][0],7);
|
|
hidden[1].setWeight(n[0][1],-4.7);
|
|
hidden[1].setWeight(n[0][2],-4.7);
|
|
|
|
hidden[2].setWeight(n[0][0],2.6);
|
|
hidden[2].setWeight(n[0][1],-6.4);
|
|
hidden[2].setWeight(n[0][2],-6.4);
|
|
|
|
out[1].setWeight(hidden[0],-4.5);
|
|
out[1].setWeight(hidden[1],9.6);
|
|
out[1].setWeight(hidden[2],-6.8);
|
|
|
|
|
|
{
|
|
std::vector<float> ret =n.computeOutput({1,1});
|
|
assert(ret[0] < 0.5);
|
|
}
|
|
|
|
{
|
|
std::vector<float> ret =n.computeOutput({0,1});
|
|
assert(ret[0] > 0.5);
|
|
}
|
|
|
|
{
|
|
std::vector<float> ret =n.computeOutput({1,0});
|
|
assert(ret[0] > 0.5);
|
|
}
|
|
|
|
{
|
|
std::vector<float> ret =n.computeOutput({0,0});
|
|
assert(ret[0] < 0.5);
|
|
}
|
|
}
|
|
}
|
|
|