Files
NeuralNetworkLib/tests/nn-02.cpp
2015-08-29 16:44:09 +02:00

95 lines
1.4 KiB
C++

#include "../src/NeuralNetwork/FeedForward"
#include <iostream>
class X: public Shin::Problem
{
protected:
std::vector<float> representation() const
{
return std::vector<float>({1,1});
}
};
class X1: public Shin::Problem
{
protected:
std::vector<float> representation() const
{
return std::vector<float>({1});
}
};
int main()
{
NeuralNetwork::FeedForward n({2,4,2});
NeuralNetwork::FeedForward nq({2,4,2});
if(n[2].size() != 4)
{
std::cout << "1) Actual size:" << n[1].size();
return 1;
}
if(nq[1].size() != 4)
{
std::cout << "QUICK Actual size:" << nq[1].size();
return 1;
}
n[2][0].setPotential(25);
nq[2][0].setPotential(25);
std::cout << "Potential: " << n[2][0].getPotential() << "\n";
std::cout << "Potential: " << nq[2][0].getPotential() << "\n";
Shin::Solution s =n.solve(X());
Shin::Solution sq =nq.solve(X());
if(s.size()!=2)
{
std::cout << "1";
return 1;
}
for(int i=0;i<2;i++)
{
if(s[i]!=sq[i])
{
std::cout << " 4 - " << i << " expected "<<s[i] << " was " <<sq[i];
return 1;
}
}
n[2][0].setWeight(0,26.0);
nq[2][0].setWeight(0,26.0);
s =n.solve(X());
sq =n.solve(X());
if(s.size()!=2)
{
std::cout << "a1";
return 1;
}
if(s[0]!=1)
{
std::cout << "a2";
return 1;
}
if(s[1]!=1)
{
std::cout << "a3";
return 1;
}
for(int i=0;i<2;i++)
{
if(s[i]!=sq[i])
{
std::cout << " a4 - " << i << " expected "<<s[i] << " was " <<sq[i];
return 1;
}
}
return 0;
}