58 lines
1.5 KiB
C++
58 lines
1.5 KiB
C++
#include "../src/NeuralNetwork/FeedForward"
|
|
#include "../src/NeuralNetwork/Learning/BackPropagation"
|
|
|
|
#include <iostream>
|
|
#include <vector>
|
|
|
|
class X: public Shin::Problem
|
|
{
|
|
public:
|
|
X(const X& a) :Problem(),q(a.q) {}
|
|
X(const std::vector<float> &a):q(a) {}
|
|
std::vector<float> representation() const
|
|
{
|
|
return q;
|
|
}
|
|
protected:
|
|
std::vector<float> q;
|
|
};
|
|
|
|
int main()
|
|
{
|
|
std::vector<Shin::Solution> s;
|
|
std::vector<X> p;
|
|
|
|
//
|
|
s.push_back(Shin::Solution(std::vector<float>({0})));
|
|
p.push_back(X(std::vector<float>({1,0})));
|
|
s.push_back(Shin::Solution(std::vector<float>({0})));
|
|
p.push_back(X(std::vector<float>({0,1})));
|
|
s.push_back(Shin::Solution(std::vector<float>({0})));
|
|
p.push_back(X(std::vector<float>({0,0})));
|
|
s.push_back(Shin::Solution(std::vector<float>({1})));
|
|
p.push_back(X(std::vector<float>({1,1})));
|
|
|
|
Shin::NeuralNetwork::FeedForward q({2,4,1});
|
|
Shin::NeuralNetwork::Learning::BackPropagation b(q);
|
|
b.setLearningCoeficient(10);
|
|
|
|
for(int i=0;i<4;i++)
|
|
{
|
|
b.teach(p[i%4],s[i%4]);
|
|
std::cerr << i%4 <<". FOR: [" << p[i%4].representation()[0] << "," <<p[i%4].representation()[1] << "] res: " << q.solve(p[i%4])[0] << " should be " <<
|
|
s[i%4][0]<<"\n";
|
|
}
|
|
|
|
for(int i=0;i<40000;i++)
|
|
{
|
|
b.teach(p[i%4],s[i%4]);
|
|
}
|
|
std::cerr << "LEARNED\n";
|
|
for(int i=0;i<4;i++)
|
|
{
|
|
b.teach(p[i%4],s[i%4]);
|
|
std::cerr << i%4 <<". FOR: [" << p[i%4].representation()[0] << "," <<p[i%4].representation()[1] << "] res: " << q.solve(p[i%4])[0] << " should be " <<
|
|
s[i%4][0]<<"\n";
|
|
}
|
|
|
|
} |