loooot of fixes nad SSE enhacement
This commit is contained in:
@@ -2,10 +2,13 @@ CXX=g++ -m64
|
||||
CXXFLAGS+= -Wall -Wextra -pedantic -Weffc++ -Wshadow -Wstrict-aliasing -ansi -Woverloaded-virtual -Wdelete-non-virtual-dtor
|
||||
#CXXFLAGS+=-Werror
|
||||
CXXFLAGS+= -g
|
||||
CXXFLAGS+= -O3 -msse4.2 -mfpmath=sse -march=native -mtune=native
|
||||
CXXFLAGS+= -msse4.2 -mmmx
|
||||
#-fprefetch-loop-arrays
|
||||
CXXFLAGS+= -std=c++14
|
||||
#CXXFLAGS+= -pg -fPIC
|
||||
CXXFLAGS+= -fPIC -pthread
|
||||
|
||||
OPTIMALIZATION = -O3 -march=native -mtune=native
|
||||
|
||||
%.o : %.cpp %.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
$(CXX) $(CXXFLAGS) $(OPTIMALIZATION) -c $< -o $@
|
||||
|
||||
@@ -40,14 +40,15 @@ FeedForwardNetworkQuick::~FeedForwardNetworkQuick()
|
||||
}
|
||||
delete[] weights[i];
|
||||
delete[] potentials[i];
|
||||
if(i!=layers-1)
|
||||
delete[] sums[i];
|
||||
delete[] sums[i];
|
||||
delete[] inputs[i];
|
||||
}
|
||||
delete[] sums[layers];
|
||||
delete[] weights;
|
||||
delete[] potentials;
|
||||
delete[] layerSizes;
|
||||
delete[] sums;
|
||||
delete[] inputs;
|
||||
}
|
||||
if(ffLayers !=nullptr)
|
||||
{
|
||||
@@ -61,39 +62,40 @@ FeedForwardNetworkQuick::~FeedForwardNetworkQuick()
|
||||
|
||||
void FeedForwardNetworkQuick::solvePart(float *newSolution, register size_t begin, size_t end,size_t prevSize, float *sol,size_t layer)
|
||||
{
|
||||
if(prevSize >8)
|
||||
if(prevSize >4)
|
||||
{
|
||||
__m128 partialSolution;
|
||||
__m128 partialSolution2;
|
||||
__m128 w;
|
||||
__m128 sols;
|
||||
__m128 w2;
|
||||
__m128 sols2;
|
||||
__m128 temporaryConst1=_mm_set1_ps(1.0);
|
||||
__m128 temporaryConstLambda=_mm_set1_ps(-lambda);
|
||||
register size_t alignedPrev=prevSize>8?(prevSize-(prevSize%8)):0;
|
||||
float tmp;
|
||||
register size_t alignedPrev=prevSize>16?(prevSize-(prevSize%16)):0;
|
||||
for( size_t j=begin;j<end;j++)
|
||||
{
|
||||
tmp=0;
|
||||
partialSolution= _mm_setzero_ps();
|
||||
w=_mm_setzero_ps();
|
||||
for(register size_t k=alignedPrev;k<prevSize;k++)
|
||||
{
|
||||
tmp+=sol[k]*weights[layer][j][k];
|
||||
w = _mm_load_ss(this->weights[layer][j]+k);
|
||||
sols = _mm_load_ss(sol+k);
|
||||
w=_mm_mul_ps(w,sols);
|
||||
partialSolution=_mm_add_ps(partialSolution,w);
|
||||
// w=_mm_shuffle_ps(w,w,3*2^0+0*2^2+1*2^4+2*2^6);
|
||||
// sols=_mm_shuffle_ps(sols,sols,3*2^0+0*2^2+1*2^4+2*2^6);
|
||||
}
|
||||
partialSolution = _mm_setzero_ps();
|
||||
partialSolution2 = _mm_set_ss(tmp);
|
||||
for(register size_t k=0;k<alignedPrev;k+=8)
|
||||
for(register size_t k=0;k<alignedPrev;k+=4)
|
||||
{
|
||||
w = _mm_load_ps(this->weights[layer][j]+k);
|
||||
w2 = _mm_load_ps(this->weights[layer][j]+k+4);
|
||||
//_mm_prefetch((char*)this->weights[layer][j]+k+4,_MM_HINT_T0);
|
||||
sols = _mm_load_ps(sol+k);
|
||||
sols2 = _mm_load_ps(sol+k+4);
|
||||
w=_mm_mul_ps(w,sols);
|
||||
w2=_mm_mul_ps(w2,sols2);
|
||||
partialSolution=_mm_add_ps(partialSolution,w);
|
||||
partialSolution2=_mm_add_ps(partialSolution2,w2);
|
||||
}
|
||||
partialSolution = _mm_hadd_ps(partialSolution, partialSolution2);
|
||||
/* pre-SSE3 solution
|
||||
__m128 temp = _mm_add_ps(_mm_movehl_ps(foo128, foo128), foo128);
|
||||
float x;
|
||||
_mm_store_ss(&x, _mm_add_ss(temp, _mm_shuffle_ps(temp, 1)));
|
||||
*/
|
||||
partialSolution = _mm_hadd_ps(partialSolution, partialSolution);
|
||||
partialSolution = _mm_hadd_ps(partialSolution, partialSolution);
|
||||
_mm_store_ss(inputs[layer]+j,partialSolution);
|
||||
@@ -120,7 +122,7 @@ void FeedForwardNetworkQuick::solvePart(float *newSolution, register size_t begi
|
||||
|
||||
Solution FeedForwardNetworkQuick::solve(const Problem& p)
|
||||
{
|
||||
std::vector<bool> solution(p);
|
||||
std::vector<float> solution(p);
|
||||
register float* sol=sums[0];//new bool[solution.size()];
|
||||
|
||||
for(size_t i=0;i<solution.size();i++)
|
||||
@@ -132,11 +134,10 @@ Solution FeedForwardNetworkQuick::solve(const Problem& p)
|
||||
for(register size_t i=0;i<layers;i++)
|
||||
{
|
||||
float* newSolution= sums[i+1];//new bool[layerSizes[i]];
|
||||
if(threads > 1 && (layerSizes[i] > 700 ||prevSize > 700)) // 600 is an guess about actual size, when creating thread has some speedup
|
||||
if(threads > 1 && (layerSizes[i] > 700 ||prevSize > 700)) // 700 is an guess about actual size, when creating thread has some speedup
|
||||
{
|
||||
std::vector<std::thread> th;
|
||||
size_t s=1;
|
||||
//TODO THIS IS NOT WORKING!!!
|
||||
size_t step =layerSizes[i]/threads;
|
||||
for(size_t t=1;t<=threads;t++)
|
||||
{
|
||||
@@ -158,7 +159,7 @@ Solution FeedForwardNetworkQuick::solve(const Problem& p)
|
||||
prevSize=layerSizes[i];
|
||||
sol=newSolution;
|
||||
}
|
||||
std::vector<double> ret;
|
||||
std::vector<float> ret;
|
||||
for(size_t i=1;i<prevSize;i++)
|
||||
{
|
||||
ret.push_back(sol[i]);
|
||||
|
||||
@@ -17,6 +17,7 @@
|
||||
#include <xmmintrin.h>
|
||||
#include <emmintrin.h>
|
||||
#include <xmmintrin.h>
|
||||
|
||||
#include "../sse_mathfun.h"
|
||||
|
||||
#define LAMBDA 0.8
|
||||
@@ -34,7 +35,7 @@ namespace NeuronNetwork
|
||||
FFNeuron(float &pot, float *w, float &s, float &i,float lam):potential(pot),weights(w),sum(s),inputs(i),lambda(lam) { }
|
||||
|
||||
float getPotential() {return potential;}
|
||||
void setPotential(double p) { potential=p;}
|
||||
void setPotential(float p) { potential=p;}
|
||||
float getWeight(unsigned int i ) { return weights[i];}
|
||||
void setWeight(unsigned int i,float p) { weights[i]=p; }
|
||||
inline float output() const { return sum; }
|
||||
|
||||
@@ -6,60 +6,72 @@ Shin::NeuronNetwork::Learning::BackPropagation::BackPropagation(FeedForwardNetwo
|
||||
|
||||
}
|
||||
|
||||
Shin::NeuronNetwork::Learning::BackPropagation::~BackPropagation()
|
||||
{
|
||||
if(deltas!=nullptr)
|
||||
{
|
||||
for(size_t i=0;i<network.size();i++)
|
||||
delete[] deltas[i];
|
||||
}
|
||||
delete[] deltas;
|
||||
}
|
||||
|
||||
void Shin::NeuronNetwork::Learning::BackPropagation::propagate(const Shin::NeuronNetwork::Solution& expectation)
|
||||
{
|
||||
float **deltas;
|
||||
deltas=new float*[network.size()];
|
||||
for(int i=(int)network.size()-1;i>=0;i--)
|
||||
if(deltas==nullptr)
|
||||
{
|
||||
deltas[i]=new float[network[i]->size()];
|
||||
deltas[i][0]=0.0;
|
||||
if(i==(int)network.size()-1)
|
||||
deltas=new float*[network.size()];
|
||||
for(size_t i=0;i<network.size();i++)
|
||||
{
|
||||
for(size_t j=1;j<network[i]->size();j++)
|
||||
deltas[i]=new float[network[i]->size()];
|
||||
deltas[i][0]=0.0;
|
||||
}
|
||||
}
|
||||
|
||||
for(size_t j=1;j<network[network.size()-1]->size();j++)
|
||||
{
|
||||
deltas[network.size()-1][j]= correction(expectation[j-1],network[network.size()-1]->operator[](j)->output())
|
||||
*network[network.size()-1]->operator[](j)->derivatedOutput();
|
||||
}
|
||||
|
||||
for(int i=(int)network.size()-2;i>=0;i--)
|
||||
{
|
||||
if(allowThreads)
|
||||
{
|
||||
std::vector<std::thread> th;
|
||||
size_t s=0;
|
||||
//TODO THIS IS NOT WORKING!!!
|
||||
#define THREADS 4
|
||||
int step =network[i]->size()/THREADS;
|
||||
for(int t=1;t<=THREADS;t++)
|
||||
{
|
||||
deltas[i][j]= (expectation[j-1]-network[i]->operator[](j)->output())*network[i]->operator[](j)->derivatedOutput();
|
||||
// std::cerr << "X "<< deltas[i][j] <" Z ";
|
||||
if(s>=network[i]->size())
|
||||
break;
|
||||
th.push_back(std::thread([&i,this](size_t from, size_t to)->void{
|
||||
for(size_t j=from;j<to;j++)
|
||||
{
|
||||
register float deltasWeight = 0;
|
||||
for(size_t k=1;k<this->network[i+1]->size();k++)
|
||||
{
|
||||
deltasWeight+=deltas[i+1][k]*this->network[i+1]->operator[](k)->getWeight(j);
|
||||
}
|
||||
//deltas[i][j]*=this->network[i]->operator[](j)->derivatedOutput(); // WHY THE HELL IS SEQ here??
|
||||
}
|
||||
},s,t==THREADS?network[i]->size():s+step));//{}
|
||||
s+=step;
|
||||
}
|
||||
for (auto& thr : th)
|
||||
thr.join();
|
||||
}else
|
||||
{
|
||||
if(allowThreads)
|
||||
for(size_t j=0;j<network[i]->size();j++)
|
||||
{
|
||||
std::vector<std::thread> th;
|
||||
int s=0;
|
||||
//TODO THIS IS NOT WORKING!!!
|
||||
#define THREADS 4
|
||||
int step =network[i]->size()/THREADS;
|
||||
for(int t=1;t<=THREADS;t++)
|
||||
register float deltasWeight = 0;
|
||||
for(size_t k=1;k<this->network[i+1]->size();k++)
|
||||
{
|
||||
if(s>=network[i]->size())
|
||||
break;
|
||||
th.push_back(std::thread([&i,this,&deltas](size_t from, size_t to)->void{
|
||||
for(size_t j=from;j<to;j++)
|
||||
{
|
||||
register float deltasWeight = 0;
|
||||
for(size_t k=1;k<this->network[i+1]->size();k++)
|
||||
{
|
||||
deltasWeight+=deltas[i+1][k]*this->network[i+1]->operator[](k)->getWeight(j);
|
||||
}
|
||||
//deltas[i][j]*=this->network[i]->operator[](j)->derivatedOutput(); // WHY THE HELL IS SEQ here??
|
||||
}
|
||||
},s,t==THREADS?network[i]->size():s+step));//{}
|
||||
s+=step;
|
||||
}
|
||||
for (auto& thr : th)
|
||||
thr.join();
|
||||
}else
|
||||
{
|
||||
for(size_t j=0;j<network[i]->size();j++)
|
||||
{
|
||||
register float deltasWeight = 0;
|
||||
for(size_t k=1;k<this->network[i+1]->size();k++)
|
||||
{
|
||||
deltasWeight+=deltas[i+1][k]*this->network[i+1]->operator[](k)->getWeight(j);
|
||||
}
|
||||
deltas[i][j]=deltasWeight*this->network[i]->operator[](j)->derivatedOutput();
|
||||
deltasWeight+=deltas[i+1][k]*this->network[i+1]->operator[](k)->getWeight(j);
|
||||
}
|
||||
deltas[i][j]=deltasWeight*this->network[i]->operator[](j)->derivatedOutput();
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -83,11 +95,6 @@ void Shin::NeuronNetwork::Learning::BackPropagation::propagate(const Shin::Neuro
|
||||
}
|
||||
}
|
||||
}
|
||||
for(size_t i=0;i<network.size();i++)
|
||||
{
|
||||
delete[] deltas[i];
|
||||
}
|
||||
delete[] deltas;
|
||||
}
|
||||
|
||||
|
||||
@@ -96,7 +103,7 @@ float Shin::NeuronNetwork::Learning::BackPropagation::teach(const Shin::NeuronNe
|
||||
Shin::NeuronNetwork::Solution a=network.solve(p);
|
||||
double error=calculateError(solution,a);
|
||||
|
||||
std::vector<double> s;
|
||||
std::vector<float> s;
|
||||
if(entropy)
|
||||
{
|
||||
for(size_t i=0;i<solution.size();i++)
|
||||
@@ -120,3 +127,8 @@ void Shin::NeuronNetwork::Learning::BackPropagation::setLearningCoeficient(float
|
||||
learningCoeficient=c;
|
||||
}
|
||||
|
||||
|
||||
float Shin::NeuronNetwork::Learning::BackPropagation::correction(float expected, float computed)
|
||||
{
|
||||
return expected-computed;
|
||||
}
|
||||
|
||||
@@ -30,6 +30,11 @@ namespace Learning
|
||||
{
|
||||
public:
|
||||
BackPropagation(FeedForwardNetworkQuick &n);
|
||||
virtual ~BackPropagation();
|
||||
|
||||
BackPropagation(const Shin::NeuronNetwork::Learning::BackPropagation&) =delete;
|
||||
BackPropagation operator=(const Shin::NeuronNetwork::Learning::BackPropagation&) =delete;
|
||||
|
||||
virtual void propagate(const Shin::NeuronNetwork::Solution& expectation);
|
||||
float teach(const Shin::NeuronNetwork::Problem &p,const Solution &solution);
|
||||
|
||||
@@ -38,10 +43,12 @@ namespace Learning
|
||||
void setEntropySize(int milipercents) { entropySize=milipercents; }
|
||||
inline void allowThreading() {allowThreads=1; }
|
||||
protected:
|
||||
virtual float correction(float expected, float computed);
|
||||
float learningCoeficient=0.4;
|
||||
bool entropy=0;
|
||||
bool allowThreads=0;
|
||||
int entropySize=500;
|
||||
float **deltas=nullptr;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
@@ -5,61 +5,9 @@ Shin::NeuronNetwork::Learning::OpticalBackPropagation::OpticalBackPropagation(Fe
|
||||
setEntropySize(100);
|
||||
}
|
||||
|
||||
void Shin::NeuronNetwork::Learning::OpticalBackPropagation::propagate(const Shin::NeuronNetwork::Solution& expectation)
|
||||
float Shin::NeuronNetwork::Learning::OpticalBackPropagation::correction(float expected, float computed)
|
||||
{
|
||||
double **deltas;
|
||||
deltas=new double*[network.size()];
|
||||
for(int i=(int)network.size()-1;i>=0;i--)
|
||||
{
|
||||
deltas[i]=new double[network[i]->size()];
|
||||
deltas[i][0]=0.0;
|
||||
if(i==(int)network.size()-1)
|
||||
{
|
||||
for(size_t j=1;j<network[i]->size();j++)
|
||||
{
|
||||
register double tmp=(expectation[j-1]-network[i]->operator[](j)->output());
|
||||
deltas[i][j]= (1+exp(tmp*tmp))*network[i]->operator[](j)->derivatedOutput();
|
||||
if(tmp <0)
|
||||
{
|
||||
deltas[i][j]=-deltas[i][j];
|
||||
}
|
||||
}
|
||||
}else
|
||||
{
|
||||
for(size_t j=1;j<network[i]->size();j++)
|
||||
{
|
||||
register double deltasWeight = 0;
|
||||
for(size_t k=1;k<network[i+1]->size();k++)
|
||||
{
|
||||
deltasWeight+=deltas[i+1][k]*network[i+1]->operator[](k)->getWeight(j);
|
||||
}
|
||||
deltas[i][j]=deltasWeight*network[i]->operator[](j)->derivatedOutput();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for(size_t i=0;i<network.size();i++)
|
||||
{
|
||||
size_t max;
|
||||
if(i==0)
|
||||
max=network[i]->size();
|
||||
else
|
||||
max=network[i-1]->size();
|
||||
|
||||
for(size_t j=1;j<network[i]->size();j++)
|
||||
{
|
||||
network[i]->operator[](j)->setWeight(0,network[i]->operator[](j)->getWeight(0)+deltas[i][j]*learningCoeficient);
|
||||
for(size_t k=1;k<max;k++)
|
||||
{
|
||||
network[i]->operator[](j)->setWeight(k,
|
||||
network[i]->operator[](j)->getWeight(k)+learningCoeficient* deltas[i][j]*
|
||||
(i==0? network.sums[0][k]:(double)network[i-1]->operator[](k)->output()));
|
||||
}
|
||||
}
|
||||
}
|
||||
for(size_t i=0;i<network.size();i++)
|
||||
{
|
||||
delete[] deltas[i];
|
||||
}
|
||||
delete[] deltas;
|
||||
register float tmp=(expected-computed);
|
||||
register float ret=1+exp(tmp*tmp);
|
||||
return tmp < 0? -ret:ret;
|
||||
}
|
||||
@@ -24,8 +24,8 @@ namespace Learning
|
||||
{
|
||||
public:
|
||||
OpticalBackPropagation(FeedForwardNetworkQuick &n);
|
||||
virtual void propagate(const Shin::NeuronNetwork::Solution& expectation) override;
|
||||
protected:
|
||||
virtual float correction(float expected, float computed) override;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
Shin::NeuronNetwork::Learning::Reinforcement::Reinforcement(Shin::NeuronNetwork::FeedForwardNetworkQuick& n): Unsupervised(n), p(new BackPropagation(n))
|
||||
{
|
||||
p->setLearningCoeficient(9);
|
||||
p->setLearningCoeficient(1);
|
||||
}
|
||||
|
||||
Shin::NeuronNetwork::Learning::Reinforcement::~Reinforcement()
|
||||
@@ -10,39 +10,43 @@ Shin::NeuronNetwork::Learning::Reinforcement::~Reinforcement()
|
||||
delete p;
|
||||
}
|
||||
|
||||
void Shin::NeuronNetwork::Learning::Reinforcement::setQualityFunction(std::function< double(const Problem&,const Solution&) > f)
|
||||
void Shin::NeuronNetwork::Learning::Reinforcement::setQualityFunction(std::function< float(const Problem&,const Solution&) > f)
|
||||
{
|
||||
qualityFunction=f;
|
||||
}
|
||||
|
||||
double Shin::NeuronNetwork::Learning::Reinforcement::learn(const Shin::NeuronNetwork::Problem& problem)
|
||||
float Shin::NeuronNetwork::Learning::Reinforcement::learn(const Shin::NeuronNetwork::Problem& problem)
|
||||
{
|
||||
//network[2]->operator[](0)->setWeight(0,-5);
|
||||
Solution s=network.solve(problem);
|
||||
double quality=qualityFunction(problem,s);
|
||||
std::vector<double> q;
|
||||
float quality=qualityFunction(problem,s);
|
||||
std::vector<float> q;
|
||||
//std::cerr << s[0] << "\n";
|
||||
for(register size_t j=0;j<s.size();j++)
|
||||
{
|
||||
q.push_back(s[j]*((double)(990+(rand()%21))/1000.0));
|
||||
q.push_back(s[j]);//*((float)(990+(rand()%21))/1000.0));
|
||||
}
|
||||
if(quality <= 0)
|
||||
{
|
||||
for(register size_t j=0;j<s.size();j++)
|
||||
{
|
||||
do{
|
||||
q[j]=((double)(10+rand()%80))/100.0;
|
||||
}while(fabs(q[j]-s[j]) < 0.1);
|
||||
q[j]=((float)(100-(rand()%101)))/100.0;
|
||||
}
|
||||
}
|
||||
for(register int i=abs((int)quality);i>=0;i--)
|
||||
register int i=abs((int)quality);
|
||||
if(quality != 0.0 && i==0)
|
||||
i+=1;
|
||||
for(;i>=0;i--)
|
||||
{
|
||||
p->propagate(q);
|
||||
network.solve(problem); // resolve problem ??? TOTO: should it be here?
|
||||
}
|
||||
return quality;
|
||||
}
|
||||
|
||||
double Shin::NeuronNetwork::Learning::Reinforcement::learnSet(const std::vector< Shin::NeuronNetwork::Problem* >& problems)
|
||||
float Shin::NeuronNetwork::Learning::Reinforcement::learnSet(const std::vector< Shin::NeuronNetwork::Problem* >& problems)
|
||||
{
|
||||
double err=0;
|
||||
float err=0;
|
||||
for(Shin::NeuronNetwork::Problem *pr:problems)
|
||||
{
|
||||
err+=learn(*pr);
|
||||
|
||||
@@ -45,15 +45,15 @@ namespace Learning
|
||||
Reinforcement(const Reinforcement&) =delete;
|
||||
Reinforcement& operator=(const Reinforcement&) =delete;
|
||||
|
||||
void setQualityFunction(std::function<double(const Problem&,const Solution&)>);
|
||||
double learn(const Shin::NeuronNetwork::Problem &p);
|
||||
double learnSet(const std::vector<Shin::NeuronNetwork::Problem*> &);
|
||||
void setQualityFunction(std::function<float(const Problem&,const Solution&)>);
|
||||
float learn(const Shin::NeuronNetwork::Problem &p);
|
||||
float learnSet(const std::vector<Shin::NeuronNetwork::Problem*> &);
|
||||
void setCoef(double q);
|
||||
inline BackPropagation& getPropagator() {return *p;};
|
||||
void setPropagator(BackPropagation *p);
|
||||
protected:
|
||||
double learningCoeficient=3;
|
||||
std::function<double(const Problem&,const Solution&)> qualityFunction=nullptr;
|
||||
float learningCoeficient=3;
|
||||
std::function<float(const Problem&,const Solution&)> qualityFunction=nullptr;
|
||||
BackPropagation *p;
|
||||
};
|
||||
}
|
||||
|
||||
@@ -19,9 +19,9 @@ Layer::~Layer()
|
||||
}
|
||||
|
||||
|
||||
Solution Layer::solve(const std::vector<double> &input)
|
||||
Solution Layer::solve(const std::vector<float> &input)
|
||||
{
|
||||
std::vector <double> ret;
|
||||
std::vector <float> ret;
|
||||
for(Neuron *n:neurons)
|
||||
{
|
||||
ret.push_back(n->output(input));
|
||||
|
||||
@@ -42,7 +42,7 @@ namespace NeuronNetwork
|
||||
}
|
||||
}
|
||||
~Layer();
|
||||
Solution solve(const std::vector<double> &input);
|
||||
Solution solve(const std::vector<float> &input);
|
||||
Neuron* operator[](int neuron) const;
|
||||
int size() const {return neurons.size();};
|
||||
protected:
|
||||
|
||||
@@ -6,17 +6,17 @@ Neuron::Neuron(): potential(1),weights()
|
||||
{
|
||||
|
||||
}
|
||||
double Neuron::getPotential() const
|
||||
float Neuron::getPotential() const
|
||||
{
|
||||
return potential;
|
||||
}
|
||||
|
||||
void Neuron::setPotential(double p)
|
||||
void Neuron::setPotential(float p)
|
||||
{
|
||||
potential=p;
|
||||
}
|
||||
|
||||
double Neuron::getWeight(unsigned int i) const
|
||||
float Neuron::getWeight(unsigned int i) const
|
||||
{
|
||||
if(i >= weights.size())
|
||||
{
|
||||
@@ -25,7 +25,7 @@ double Neuron::getWeight(unsigned int i) const
|
||||
return weights[0];
|
||||
}
|
||||
|
||||
void Neuron::setWeight(unsigned int i,double p)
|
||||
void Neuron::setWeight(unsigned int i,float p)
|
||||
{
|
||||
if(i >= weights.size())
|
||||
{
|
||||
@@ -36,9 +36,9 @@ void Neuron::setWeight(unsigned int i,double p)
|
||||
weights[i]=p;
|
||||
}
|
||||
|
||||
double Neuron::output(std::vector<double> input)
|
||||
float Neuron::output(std::vector<float> input)
|
||||
{
|
||||
register double sum=0;
|
||||
register float sum=0;
|
||||
for(unsigned int i=0;i<input.size();i++)
|
||||
{
|
||||
// std::cerr << "W: " << getWeight(i) <<"\n";
|
||||
|
||||
@@ -16,18 +16,18 @@ namespace NeuronNetwork
|
||||
{
|
||||
|
||||
}
|
||||
double getPotential() const;
|
||||
void setPotential(double p);
|
||||
double getWeight(unsigned int) const;
|
||||
void setWeight(unsigned int i,double p);
|
||||
double output(const std::vector<double>);
|
||||
double output() { return lastOutput;}
|
||||
float getPotential() const;
|
||||
void setPotential(float p);
|
||||
float getWeight(unsigned int) const;
|
||||
void setWeight(unsigned int i,float p);
|
||||
float output(const std::vector<float>);
|
||||
float output() { return lastOutput;}
|
||||
protected:
|
||||
double potential;
|
||||
private:
|
||||
std::vector<double> weights;
|
||||
double lastOutput=0.0;
|
||||
double lastInput=0.0;
|
||||
std::vector<float> weights;
|
||||
float lastOutput=0.0;
|
||||
float lastInput=0.0;
|
||||
};
|
||||
class SimpleNeuron: public Neuron
|
||||
{
|
||||
|
||||
@@ -7,7 +7,7 @@ Problem::Problem()
|
||||
|
||||
}
|
||||
|
||||
Problem::operator std::vector<bool>() const
|
||||
Problem::operator std::vector<float>() const
|
||||
{
|
||||
return representation();
|
||||
}
|
||||
|
||||
@@ -13,8 +13,8 @@ namespace NeuronNetwork
|
||||
public:
|
||||
Problem();
|
||||
virtual ~Problem(){};
|
||||
operator std::vector<bool>() const;
|
||||
virtual std::vector<bool> representation() const =0;
|
||||
operator std::vector<float>() const;
|
||||
virtual std::vector<float> representation() const =0;
|
||||
protected:
|
||||
private:
|
||||
};
|
||||
|
||||
@@ -2,21 +2,21 @@
|
||||
|
||||
using namespace Shin::NeuronNetwork;
|
||||
|
||||
Solution::Solution(std::vector<double>sol):solution(sol)
|
||||
Solution::Solution(std::vector<float>sol):solution(sol)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
Solution::Solution(const Problem& p):solution()
|
||||
{
|
||||
std::vector<bool> q(p);
|
||||
for(bool s:q)
|
||||
std::vector<float> q(p);
|
||||
for(float s:q)
|
||||
{
|
||||
solution.push_back(s);
|
||||
}
|
||||
}
|
||||
|
||||
double Solution::operator[](size_t pos) const
|
||||
float Solution::operator[](size_t pos) const
|
||||
{
|
||||
return solution[pos];
|
||||
}
|
||||
@@ -26,7 +26,7 @@ size_t Solution::size() const
|
||||
return solution.size();
|
||||
}
|
||||
|
||||
Solution::operator std::vector<double>()
|
||||
Solution::operator std::vector<float>()
|
||||
{
|
||||
return solution;
|
||||
}
|
||||
@@ -13,12 +13,12 @@ namespace NeuronNetwork
|
||||
{
|
||||
public:
|
||||
Solution(const Problem& p);
|
||||
Solution(std::vector<double> solution);
|
||||
Solution(std::vector<float> solution);
|
||||
size_t size() const;
|
||||
double operator[] (size_t pos) const;
|
||||
operator std::vector<double>();
|
||||
float operator[] (size_t pos) const;
|
||||
operator std::vector<float>();
|
||||
protected:
|
||||
std::vector<double> solution;
|
||||
std::vector<float> solution;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
include ../Makefile.const
|
||||
|
||||
OPTIMALIZATION=
|
||||
LIB_DIR = ../lib
|
||||
GEN_TESTS=g-01 g-02
|
||||
NN_TESTS= \
|
||||
@@ -23,7 +24,7 @@ test: all
|
||||
@for i in $(ALL_TESTS); do echo -n ./$$i; echo -n " - "; ./$$i; echo ""; done
|
||||
|
||||
g-%: g-%.cpp $(LIB_DIR)/Genetics.a
|
||||
$(CXX) $(CXXFLAGS) -o $@ $< $ $(LIB_DIR)/Genetics.a $(LIB_DIR)/NeuronNetwork.a -lm
|
||||
$(CXX) $(CXXFLAGS) $(OPTIMALIZATION) -o $@ $< $ $(LIB_DIR)/Genetics.a $(LIB_DIR)/NeuronNetwork.a -lm
|
||||
|
||||
nn-%: nn-%.cpp $(LIB_DIR)/NeuronNetwork.a
|
||||
$(CXX) $(CXXFLAGS) -o $@ $< $ $(LIB_DIR)/NeuronNetwork.a -lm
|
||||
|
||||
@@ -9,59 +9,45 @@ class X: public Shin::NeuronNetwork::Problem
|
||||
{
|
||||
public:
|
||||
X(const X& a) :q(a.q) {}
|
||||
X(const std::vector<bool> &a):q(a) {}
|
||||
std::vector<bool> representation() const
|
||||
X(const std::vector<float> &a):q(a) {}
|
||||
X(const std::vector<bool> &a):q() {for(bool s:a) q.push_back((float)s);}
|
||||
std::vector<float> representation() const
|
||||
{
|
||||
return q;
|
||||
}
|
||||
protected:
|
||||
std::vector<bool> q;
|
||||
std::vector<float> q;
|
||||
};
|
||||
|
||||
int main(int argc)
|
||||
int main(int argc,char**)
|
||||
{
|
||||
srand(time(NULL));
|
||||
std::vector<Shin::NeuronNetwork::Solution> s;
|
||||
std::vector<X> p;
|
||||
|
||||
//
|
||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<double>({1})));
|
||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({1})));
|
||||
p.push_back(X(std::vector<bool>({0})));
|
||||
|
||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<double>({0})));
|
||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({0})));
|
||||
p.push_back(X(std::vector<bool>({1})));
|
||||
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({1,5000,5000,5000});
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({1,5000,5000,15000,2});
|
||||
Shin::NeuronNetwork::Learning::BackPropagation b(q);
|
||||
if(argc > 1)
|
||||
{
|
||||
std::cerr << "THREADING\n";
|
||||
q.setThreads(4);
|
||||
q.setThreads(2);
|
||||
}
|
||||
#include <chrono>
|
||||
auto t1 = std::chrono::high_resolution_clock::now();
|
||||
for(int i=0;i<100;i++)
|
||||
{
|
||||
//b.teach(p[i%2],s[i%2]);
|
||||
q.solve(p[i%2])[0];
|
||||
//std::cerr << i%2 <<". FOR: [" << p[i%2].representation()[0] << "] res: " << q.solve(p[i%2])[0] << " should be " << s[i%2][0]<<"\n";
|
||||
}
|
||||
for(int i=0;i<2;i++)
|
||||
{
|
||||
// b.teach(p[i%2],s[i%2]);
|
||||
// std::cerr << i%4 <<". FOR: [" << p[i%4].representation()[0] << "," <<p[i%4].representation()[0] << "] res: " << q.solve(p[i%4])[0] << " should be " <<
|
||||
// s[i%4][0]<<"\n";
|
||||
}
|
||||
/*
|
||||
for(int i=0;i<40;i++)
|
||||
{
|
||||
b.teach(p[i%4],s[i%4]);
|
||||
}
|
||||
b.debugOn();
|
||||
std::cerr << "LEARNED\n";
|
||||
for(int i=0;i<4;i++)
|
||||
{
|
||||
b.teach(p[i%4],s[i%4]);
|
||||
std::cerr << i%4 <<". FOR: [" << p[i%4].representation()[0] << "," <<p[i%4].representation()[1] << "] res: " << q.solve(p[i%4])[0] << " should be " <<
|
||||
s[i%4][0]<<"\n";
|
||||
}
|
||||
*/
|
||||
auto t2 = std::chrono::high_resolution_clock::now();
|
||||
std::cout << "Time: " << std::chrono::duration_cast<std::chrono::milliseconds>(t2-t1).count() << std::endl;
|
||||
|
||||
}
|
||||
@@ -7,9 +7,9 @@
|
||||
class X: public Shin::NeuronNetwork::Problem
|
||||
{
|
||||
protected:
|
||||
std::vector<bool> representation() const
|
||||
std::vector<float> representation() const
|
||||
{
|
||||
return std::vector<bool>({1,1});
|
||||
return std::vector<float>({1,1});
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -9,13 +9,13 @@ class X: public Shin::NeuronNetwork::Problem
|
||||
{
|
||||
public:
|
||||
X(const X& a) :q(a.q) {}
|
||||
X(const std::vector<bool> &a):q(a) {}
|
||||
std::vector<bool> representation() const
|
||||
X(const std::vector<float> &a):q(a) {}
|
||||
std::vector<float> representation() const
|
||||
{
|
||||
return q;
|
||||
}
|
||||
protected:
|
||||
std::vector<bool> q;
|
||||
std::vector<float> q;
|
||||
};
|
||||
|
||||
int main()
|
||||
@@ -24,14 +24,14 @@ int main()
|
||||
std::vector<X> p;
|
||||
|
||||
//
|
||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<double>({0})));
|
||||
p.push_back(X(std::vector<bool>({1,0})));
|
||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<double>({0})));
|
||||
p.push_back(X(std::vector<bool>({0,1})));
|
||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<double>({0})));
|
||||
p.push_back(X(std::vector<bool>({0,0})));
|
||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<double>({1})));
|
||||
p.push_back(X(std::vector<bool>({1,1})));
|
||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({0})));
|
||||
p.push_back(X(std::vector<float>({1,0})));
|
||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({0})));
|
||||
p.push_back(X(std::vector<float>({0,1})));
|
||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({0})));
|
||||
p.push_back(X(std::vector<float>({0,0})));
|
||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({1})));
|
||||
p.push_back(X(std::vector<float>({1,1})));
|
||||
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,4,1});
|
||||
Shin::NeuronNetwork::Learning::BackPropagation b(q);
|
||||
@@ -45,7 +45,7 @@ int main()
|
||||
}
|
||||
b.debugOff();
|
||||
|
||||
for(int i=0;i<40;i++)
|
||||
for(int i=0;i<4000;i++)
|
||||
{
|
||||
b.teach(p[i%4],s[i%4]);
|
||||
}
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
class X: public Shin::NeuronNetwork::Problem
|
||||
{
|
||||
public: X(bool x,bool y):x(x),y(y) {}
|
||||
protected: std::vector<bool> representation() const { return std::vector<bool>({x,y}); }
|
||||
protected: std::vector<float> representation() const { return std::vector<float>({x,y}); }
|
||||
private:
|
||||
bool x;
|
||||
bool y;
|
||||
|
||||
@@ -9,27 +9,27 @@ class X: public Shin::NeuronNetwork::Problem
|
||||
{
|
||||
public:
|
||||
X(const X& a) :q(a.q) {}
|
||||
X(const std::vector<bool> &a):q(a) {}
|
||||
std::vector<bool> representation() const
|
||||
X(const std::vector<float> &a):q(a) {}
|
||||
std::vector<float> representation() const
|
||||
{
|
||||
return q;
|
||||
}
|
||||
protected:
|
||||
std::vector<bool> q;
|
||||
std::vector<float> q;
|
||||
};
|
||||
|
||||
int main(int argc, char*argv)
|
||||
int main(int argc, char**)
|
||||
{
|
||||
srand(time(NULL));
|
||||
std::vector<Shin::NeuronNetwork::Solution> s;
|
||||
std::vector<X> p;
|
||||
|
||||
//
|
||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<double>({1})));
|
||||
p.push_back(X(std::vector<bool>({0})));
|
||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({1})));
|
||||
p.push_back(X(std::vector<float>({0})));
|
||||
|
||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<double>({0})));
|
||||
p.push_back(X(std::vector<bool>({1})));
|
||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({0})));
|
||||
p.push_back(X(std::vector<float>({1})));
|
||||
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({1,5000,5000,5000,1});
|
||||
Shin::NeuronNetwork::Learning::BackPropagation b(q);
|
||||
|
||||
@@ -8,13 +8,13 @@ class X: public Shin::NeuronNetwork::Problem
|
||||
{
|
||||
public:
|
||||
X(const X& a) :q(a.q) {}
|
||||
X(const std::vector<bool> &a):q(a) {}
|
||||
std::vector<bool> representation() const
|
||||
X(const std::vector<float> &a):q(a) {}
|
||||
std::vector<float> representation() const
|
||||
{
|
||||
return q;
|
||||
}
|
||||
protected:
|
||||
std::vector<bool> q;
|
||||
std::vector<float> q;
|
||||
};
|
||||
|
||||
int main()
|
||||
@@ -29,17 +29,17 @@ int main()
|
||||
std::vector<Shin::NeuronNetwork::Solution*> s;
|
||||
std::vector<Shin::NeuronNetwork::Problem*> p;
|
||||
|
||||
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<double>({0})));
|
||||
p.push_back(new X(std::vector<bool>({0,0})));
|
||||
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<float>({0})));
|
||||
p.push_back(new X(std::vector<float>({0,0})));
|
||||
|
||||
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<double>({1})));
|
||||
p.push_back( new X(std::vector<bool>({1,0})));
|
||||
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<float>({1})));
|
||||
p.push_back( new X(std::vector<float>({1,0})));
|
||||
|
||||
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<double>({0})));
|
||||
p.push_back(new X(std::vector<bool>({1,1})));
|
||||
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<float>({0})));
|
||||
p.push_back(new X(std::vector<float>({1,1})));
|
||||
|
||||
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<double>({1})));
|
||||
p.push_back( new X(std::vector<bool>({0,1})));
|
||||
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<float>({1})));
|
||||
p.push_back( new X(std::vector<float>({0,1})));
|
||||
|
||||
if(test)
|
||||
{
|
||||
|
||||
@@ -8,13 +8,13 @@ class X: public Shin::NeuronNetwork::Problem
|
||||
{
|
||||
public:
|
||||
X(const X& a) :q(a.q) {}
|
||||
X(const std::vector<bool> &a):q(a) {}
|
||||
std::vector<bool> representation() const
|
||||
X(const std::vector<float> &a):q(a) {}
|
||||
std::vector<float> representation() const
|
||||
{
|
||||
return q;
|
||||
}
|
||||
protected:
|
||||
std::vector<bool> q;
|
||||
std::vector<float> q;
|
||||
};
|
||||
|
||||
int main()
|
||||
@@ -29,17 +29,17 @@ int main()
|
||||
std::vector<Shin::NeuronNetwork::Solution*> s;
|
||||
std::vector<Shin::NeuronNetwork::Problem*> p;
|
||||
|
||||
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<double>({0})));
|
||||
p.push_back(new X(std::vector<bool>({0,0})));
|
||||
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<float>({0})));
|
||||
p.push_back(new X(std::vector<float>({0,0})));
|
||||
|
||||
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<double>({1})));
|
||||
p.push_back( new X(std::vector<bool>({1,0})));
|
||||
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<float>({1})));
|
||||
p.push_back( new X(std::vector<float>({1,0})));
|
||||
|
||||
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<double>({0})));
|
||||
p.push_back(new X(std::vector<bool>({1,1})));
|
||||
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<float>({0})));
|
||||
p.push_back(new X(std::vector<float>({1,1})));
|
||||
|
||||
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<double>({1})));
|
||||
p.push_back( new X(std::vector<bool>({0,1})));
|
||||
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<float>({1})));
|
||||
p.push_back( new X(std::vector<float>({0,1})));
|
||||
|
||||
b.debugOn();
|
||||
if(test)
|
||||
|
||||
@@ -9,13 +9,13 @@ class X: public Shin::NeuronNetwork::Problem
|
||||
{
|
||||
public:
|
||||
X(const X& a) :q(a.q) {}
|
||||
X(const std::vector<bool> &a):q(a) {}
|
||||
std::vector<bool> representation() const
|
||||
X(const std::vector<float> &a):q(a) {}
|
||||
std::vector<float> representation() const
|
||||
{
|
||||
return q;
|
||||
}
|
||||
protected:
|
||||
std::vector<bool> q;
|
||||
std::vector<float> q;
|
||||
};
|
||||
|
||||
int main()
|
||||
@@ -24,15 +24,16 @@ int main()
|
||||
|
||||
std::vector<X> p;
|
||||
|
||||
p.push_back(X(std::vector<bool>({0,0})));
|
||||
p.push_back(X(std::vector<float>({0,0})));
|
||||
|
||||
p.push_back(X(std::vector<bool>({1,1})));
|
||||
p.push_back(X(std::vector<float>({1,1})));
|
||||
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,6,2});
|
||||
Shin::NeuronNetwork::Learning::Reinforcement b(q);
|
||||
b.getPropagator().setLearningCoeficient(1);
|
||||
int i=0;
|
||||
b.setQualityFunction(
|
||||
[&i](const Shin::NeuronNetwork::Solution &s)->double
|
||||
[&i](const Shin::NeuronNetwork::Problem &,const Shin::NeuronNetwork::Solution &s)->float
|
||||
{
|
||||
if(i%2==0)
|
||||
{
|
||||
|
||||
@@ -9,13 +9,13 @@ class X: public Shin::NeuronNetwork::Problem
|
||||
{
|
||||
public:
|
||||
X(const X& a) :q(a.q) {}
|
||||
X(const std::vector<bool> &a):q(a) {}
|
||||
std::vector<bool> representation() const
|
||||
X(const std::vector<float> &a):q(a) {}
|
||||
std::vector<float> representation() const
|
||||
{
|
||||
return q;
|
||||
}
|
||||
protected:
|
||||
std::vector<bool> q;
|
||||
std::vector<float> q;
|
||||
};
|
||||
|
||||
int main()
|
||||
@@ -24,16 +24,16 @@ int main()
|
||||
|
||||
std::vector<Shin::NeuronNetwork::Problem*> p;
|
||||
|
||||
p.push_back(new X(std::vector<bool>({0,0})));
|
||||
p.push_back(new X(std::vector<float>({0,0})));
|
||||
|
||||
p.push_back(new X(std::vector<bool>({1,1})));
|
||||
p.push_back(new X(std::vector<float>({1,1})));
|
||||
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({1,1});
|
||||
Shin::NeuronNetwork::Learning::Reinforcement b(q);
|
||||
int i=0;
|
||||
double targetQuality=1.4;
|
||||
b.setQualityFunction(
|
||||
[](const Shin::NeuronNetwork::Problem &pr,const Shin::NeuronNetwork::Solution &s)->double
|
||||
[](const Shin::NeuronNetwork::Problem &pr,const Shin::NeuronNetwork::Solution &s)->float
|
||||
{
|
||||
if(pr.representation()[0]==0)
|
||||
{
|
||||
|
||||
@@ -9,23 +9,26 @@ class X: public Shin::NeuronNetwork::Problem
|
||||
{
|
||||
public:
|
||||
X(const X& a) :q(a.q) {}
|
||||
X(const std::vector<bool> &a):q(a) {}
|
||||
std::vector<bool> representation() const
|
||||
X(const std::vector<float> &a):q(a) {}
|
||||
std::vector<float> representation() const
|
||||
{
|
||||
return q;
|
||||
}
|
||||
protected:
|
||||
std::vector<bool> q;
|
||||
std::vector<float> q;
|
||||
};
|
||||
|
||||
int main()
|
||||
{
|
||||
|
||||
srand(time(NULL));
|
||||
for (int test=0;test<3;test++)
|
||||
{
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,6,1});
|
||||
Shin::NeuronNetwork::Learning::Reinforcement b(q);
|
||||
double targetQuality =1.2;
|
||||
b.setPropagator(new Shin::NeuronNetwork::Learning::OpticalBackPropagation(q));
|
||||
b.getPropagator().setLearningCoeficient(0.9);
|
||||
b.getPropagator().allowEntropy();
|
||||
double targetQuality =1.7;
|
||||
if(test==2)
|
||||
{
|
||||
targetQuality =1.62;
|
||||
@@ -35,10 +38,10 @@ int main()
|
||||
b.getPropagator().setLearningCoeficient(3);
|
||||
}
|
||||
b.setQualityFunction(
|
||||
[](const Shin::NeuronNetwork::Problem &pr,const Shin::NeuronNetwork::Solution &s)->double
|
||||
[](const Shin::NeuronNetwork::Problem &pr,const Shin::NeuronNetwork::Solution &s)->float
|
||||
{
|
||||
std::vector <bool> p=pr;
|
||||
double expect=0.0;
|
||||
std::vector <float> p=pr;
|
||||
float expect=0.0;
|
||||
if(p[0] && p[1])
|
||||
expect=0;
|
||||
else if(p[0] && !p[1])
|
||||
@@ -60,17 +63,15 @@ int main()
|
||||
|
||||
// std::cerr << " returnning " << expect*5.0 << "\n";
|
||||
|
||||
return expect*5.0;
|
||||
return expect*9.0;
|
||||
});
|
||||
|
||||
srand(time(NULL));
|
||||
|
||||
std::vector<Shin::NeuronNetwork::Problem*> p;
|
||||
|
||||
p.push_back(new X(std::vector<bool>({0,0})));
|
||||
p.push_back( new X(std::vector<bool>({1,0})));
|
||||
p.push_back( new X(std::vector<bool>({0,1})));
|
||||
p.push_back(new X(std::vector<bool>({1,1})));
|
||||
p.push_back(new X(std::vector<float>({0,0})));
|
||||
p.push_back( new X(std::vector<float>({1,0})));
|
||||
p.push_back( new X(std::vector<float>({0,1})));
|
||||
p.push_back(new X(std::vector<float>({1,1})));
|
||||
|
||||
if(test==1)
|
||||
{
|
||||
@@ -82,12 +83,13 @@ int main()
|
||||
}
|
||||
|
||||
for(int i=0;i < 500000000;i++)
|
||||
// for(int i=0;i < 5;i++)
|
||||
{
|
||||
double err=b.learnSet(p);
|
||||
|
||||
if(i%100000==0)
|
||||
srand(time(NULL));
|
||||
if(i%40000==0 || err > targetQuality)
|
||||
if(i%200000==0 || err > targetQuality)
|
||||
{
|
||||
std::cerr << i << " ("<< err <<").\n";
|
||||
for(int j=0;j<4;j++)
|
||||
|
||||
Reference in New Issue
Block a user