loooot of fixes nad SSE enhacement

This commit is contained in:
2014-11-18 11:09:34 +01:00
parent 207e141cca
commit 0abc0d07dd
28 changed files with 246 additions and 280 deletions

View File

@@ -1,5 +1,6 @@
include ../Makefile.const
OPTIMALIZATION=
LIB_DIR = ../lib
GEN_TESTS=g-01 g-02
NN_TESTS= \
@@ -23,7 +24,7 @@ test: all
@for i in $(ALL_TESTS); do echo -n ./$$i; echo -n " - "; ./$$i; echo ""; done
g-%: g-%.cpp $(LIB_DIR)/Genetics.a
$(CXX) $(CXXFLAGS) -o $@ $< $ $(LIB_DIR)/Genetics.a $(LIB_DIR)/NeuronNetwork.a -lm
$(CXX) $(CXXFLAGS) $(OPTIMALIZATION) -o $@ $< $ $(LIB_DIR)/Genetics.a $(LIB_DIR)/NeuronNetwork.a -lm
nn-%: nn-%.cpp $(LIB_DIR)/NeuronNetwork.a
$(CXX) $(CXXFLAGS) -o $@ $< $ $(LIB_DIR)/NeuronNetwork.a -lm

View File

@@ -9,59 +9,45 @@ class X: public Shin::NeuronNetwork::Problem
{
public:
X(const X& a) :q(a.q) {}
X(const std::vector<bool> &a):q(a) {}
std::vector<bool> representation() const
X(const std::vector<float> &a):q(a) {}
X(const std::vector<bool> &a):q() {for(bool s:a) q.push_back((float)s);}
std::vector<float> representation() const
{
return q;
}
protected:
std::vector<bool> q;
std::vector<float> q;
};
int main(int argc)
int main(int argc,char**)
{
srand(time(NULL));
std::vector<Shin::NeuronNetwork::Solution> s;
std::vector<X> p;
//
s.push_back(Shin::NeuronNetwork::Solution(std::vector<double>({1})));
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({1})));
p.push_back(X(std::vector<bool>({0})));
s.push_back(Shin::NeuronNetwork::Solution(std::vector<double>({0})));
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({0})));
p.push_back(X(std::vector<bool>({1})));
Shin::NeuronNetwork::FeedForwardNetworkQuick q({1,5000,5000,5000});
Shin::NeuronNetwork::FeedForwardNetworkQuick q({1,5000,5000,15000,2});
Shin::NeuronNetwork::Learning::BackPropagation b(q);
if(argc > 1)
{
std::cerr << "THREADING\n";
q.setThreads(4);
q.setThreads(2);
}
#include <chrono>
auto t1 = std::chrono::high_resolution_clock::now();
for(int i=0;i<100;i++)
{
//b.teach(p[i%2],s[i%2]);
q.solve(p[i%2])[0];
//std::cerr << i%2 <<". FOR: [" << p[i%2].representation()[0] << "] res: " << q.solve(p[i%2])[0] << " should be " << s[i%2][0]<<"\n";
}
for(int i=0;i<2;i++)
{
// b.teach(p[i%2],s[i%2]);
// std::cerr << i%4 <<". FOR: [" << p[i%4].representation()[0] << "," <<p[i%4].representation()[0] << "] res: " << q.solve(p[i%4])[0] << " should be " <<
// s[i%4][0]<<"\n";
}
/*
for(int i=0;i<40;i++)
{
b.teach(p[i%4],s[i%4]);
}
b.debugOn();
std::cerr << "LEARNED\n";
for(int i=0;i<4;i++)
{
b.teach(p[i%4],s[i%4]);
std::cerr << i%4 <<". FOR: [" << p[i%4].representation()[0] << "," <<p[i%4].representation()[1] << "] res: " << q.solve(p[i%4])[0] << " should be " <<
s[i%4][0]<<"\n";
}
*/
auto t2 = std::chrono::high_resolution_clock::now();
std::cout << "Time: " << std::chrono::duration_cast<std::chrono::milliseconds>(t2-t1).count() << std::endl;
}

View File

@@ -7,9 +7,9 @@
class X: public Shin::NeuronNetwork::Problem
{
protected:
std::vector<bool> representation() const
std::vector<float> representation() const
{
return std::vector<bool>({1,1});
return std::vector<float>({1,1});
}
};

View File

@@ -9,13 +9,13 @@ class X: public Shin::NeuronNetwork::Problem
{
public:
X(const X& a) :q(a.q) {}
X(const std::vector<bool> &a):q(a) {}
std::vector<bool> representation() const
X(const std::vector<float> &a):q(a) {}
std::vector<float> representation() const
{
return q;
}
protected:
std::vector<bool> q;
std::vector<float> q;
};
int main()
@@ -24,14 +24,14 @@ int main()
std::vector<X> p;
//
s.push_back(Shin::NeuronNetwork::Solution(std::vector<double>({0})));
p.push_back(X(std::vector<bool>({1,0})));
s.push_back(Shin::NeuronNetwork::Solution(std::vector<double>({0})));
p.push_back(X(std::vector<bool>({0,1})));
s.push_back(Shin::NeuronNetwork::Solution(std::vector<double>({0})));
p.push_back(X(std::vector<bool>({0,0})));
s.push_back(Shin::NeuronNetwork::Solution(std::vector<double>({1})));
p.push_back(X(std::vector<bool>({1,1})));
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({0})));
p.push_back(X(std::vector<float>({1,0})));
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({0})));
p.push_back(X(std::vector<float>({0,1})));
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({0})));
p.push_back(X(std::vector<float>({0,0})));
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({1})));
p.push_back(X(std::vector<float>({1,1})));
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,4,1});
Shin::NeuronNetwork::Learning::BackPropagation b(q);
@@ -45,7 +45,7 @@ int main()
}
b.debugOff();
for(int i=0;i<40;i++)
for(int i=0;i<4000;i++)
{
b.teach(p[i%4],s[i%4]);
}

View File

@@ -4,7 +4,7 @@
class X: public Shin::NeuronNetwork::Problem
{
public: X(bool x,bool y):x(x),y(y) {}
protected: std::vector<bool> representation() const { return std::vector<bool>({x,y}); }
protected: std::vector<float> representation() const { return std::vector<float>({x,y}); }
private:
bool x;
bool y;

View File

@@ -9,27 +9,27 @@ class X: public Shin::NeuronNetwork::Problem
{
public:
X(const X& a) :q(a.q) {}
X(const std::vector<bool> &a):q(a) {}
std::vector<bool> representation() const
X(const std::vector<float> &a):q(a) {}
std::vector<float> representation() const
{
return q;
}
protected:
std::vector<bool> q;
std::vector<float> q;
};
int main(int argc, char*argv)
int main(int argc, char**)
{
srand(time(NULL));
std::vector<Shin::NeuronNetwork::Solution> s;
std::vector<X> p;
//
s.push_back(Shin::NeuronNetwork::Solution(std::vector<double>({1})));
p.push_back(X(std::vector<bool>({0})));
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({1})));
p.push_back(X(std::vector<float>({0})));
s.push_back(Shin::NeuronNetwork::Solution(std::vector<double>({0})));
p.push_back(X(std::vector<bool>({1})));
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({0})));
p.push_back(X(std::vector<float>({1})));
Shin::NeuronNetwork::FeedForwardNetworkQuick q({1,5000,5000,5000,1});
Shin::NeuronNetwork::Learning::BackPropagation b(q);

View File

@@ -8,13 +8,13 @@ class X: public Shin::NeuronNetwork::Problem
{
public:
X(const X& a) :q(a.q) {}
X(const std::vector<bool> &a):q(a) {}
std::vector<bool> representation() const
X(const std::vector<float> &a):q(a) {}
std::vector<float> representation() const
{
return q;
}
protected:
std::vector<bool> q;
std::vector<float> q;
};
int main()
@@ -29,17 +29,17 @@ int main()
std::vector<Shin::NeuronNetwork::Solution*> s;
std::vector<Shin::NeuronNetwork::Problem*> p;
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<double>({0})));
p.push_back(new X(std::vector<bool>({0,0})));
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<float>({0})));
p.push_back(new X(std::vector<float>({0,0})));
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<double>({1})));
p.push_back( new X(std::vector<bool>({1,0})));
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<float>({1})));
p.push_back( new X(std::vector<float>({1,0})));
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<double>({0})));
p.push_back(new X(std::vector<bool>({1,1})));
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<float>({0})));
p.push_back(new X(std::vector<float>({1,1})));
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<double>({1})));
p.push_back( new X(std::vector<bool>({0,1})));
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<float>({1})));
p.push_back( new X(std::vector<float>({0,1})));
if(test)
{

View File

@@ -8,13 +8,13 @@ class X: public Shin::NeuronNetwork::Problem
{
public:
X(const X& a) :q(a.q) {}
X(const std::vector<bool> &a):q(a) {}
std::vector<bool> representation() const
X(const std::vector<float> &a):q(a) {}
std::vector<float> representation() const
{
return q;
}
protected:
std::vector<bool> q;
std::vector<float> q;
};
int main()
@@ -29,17 +29,17 @@ int main()
std::vector<Shin::NeuronNetwork::Solution*> s;
std::vector<Shin::NeuronNetwork::Problem*> p;
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<double>({0})));
p.push_back(new X(std::vector<bool>({0,0})));
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<float>({0})));
p.push_back(new X(std::vector<float>({0,0})));
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<double>({1})));
p.push_back( new X(std::vector<bool>({1,0})));
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<float>({1})));
p.push_back( new X(std::vector<float>({1,0})));
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<double>({0})));
p.push_back(new X(std::vector<bool>({1,1})));
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<float>({0})));
p.push_back(new X(std::vector<float>({1,1})));
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<double>({1})));
p.push_back( new X(std::vector<bool>({0,1})));
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<float>({1})));
p.push_back( new X(std::vector<float>({0,1})));
b.debugOn();
if(test)

View File

@@ -9,13 +9,13 @@ class X: public Shin::NeuronNetwork::Problem
{
public:
X(const X& a) :q(a.q) {}
X(const std::vector<bool> &a):q(a) {}
std::vector<bool> representation() const
X(const std::vector<float> &a):q(a) {}
std::vector<float> representation() const
{
return q;
}
protected:
std::vector<bool> q;
std::vector<float> q;
};
int main()
@@ -24,15 +24,16 @@ int main()
std::vector<X> p;
p.push_back(X(std::vector<bool>({0,0})));
p.push_back(X(std::vector<float>({0,0})));
p.push_back(X(std::vector<bool>({1,1})));
p.push_back(X(std::vector<float>({1,1})));
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,6,2});
Shin::NeuronNetwork::Learning::Reinforcement b(q);
b.getPropagator().setLearningCoeficient(1);
int i=0;
b.setQualityFunction(
[&i](const Shin::NeuronNetwork::Solution &s)->double
[&i](const Shin::NeuronNetwork::Problem &,const Shin::NeuronNetwork::Solution &s)->float
{
if(i%2==0)
{

View File

@@ -9,13 +9,13 @@ class X: public Shin::NeuronNetwork::Problem
{
public:
X(const X& a) :q(a.q) {}
X(const std::vector<bool> &a):q(a) {}
std::vector<bool> representation() const
X(const std::vector<float> &a):q(a) {}
std::vector<float> representation() const
{
return q;
}
protected:
std::vector<bool> q;
std::vector<float> q;
};
int main()
@@ -24,16 +24,16 @@ int main()
std::vector<Shin::NeuronNetwork::Problem*> p;
p.push_back(new X(std::vector<bool>({0,0})));
p.push_back(new X(std::vector<float>({0,0})));
p.push_back(new X(std::vector<bool>({1,1})));
p.push_back(new X(std::vector<float>({1,1})));
Shin::NeuronNetwork::FeedForwardNetworkQuick q({1,1});
Shin::NeuronNetwork::Learning::Reinforcement b(q);
int i=0;
double targetQuality=1.4;
b.setQualityFunction(
[](const Shin::NeuronNetwork::Problem &pr,const Shin::NeuronNetwork::Solution &s)->double
[](const Shin::NeuronNetwork::Problem &pr,const Shin::NeuronNetwork::Solution &s)->float
{
if(pr.representation()[0]==0)
{

View File

@@ -9,23 +9,26 @@ class X: public Shin::NeuronNetwork::Problem
{
public:
X(const X& a) :q(a.q) {}
X(const std::vector<bool> &a):q(a) {}
std::vector<bool> representation() const
X(const std::vector<float> &a):q(a) {}
std::vector<float> representation() const
{
return q;
}
protected:
std::vector<bool> q;
std::vector<float> q;
};
int main()
{
srand(time(NULL));
for (int test=0;test<3;test++)
{
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,6,1});
Shin::NeuronNetwork::Learning::Reinforcement b(q);
double targetQuality =1.2;
b.setPropagator(new Shin::NeuronNetwork::Learning::OpticalBackPropagation(q));
b.getPropagator().setLearningCoeficient(0.9);
b.getPropagator().allowEntropy();
double targetQuality =1.7;
if(test==2)
{
targetQuality =1.62;
@@ -35,10 +38,10 @@ int main()
b.getPropagator().setLearningCoeficient(3);
}
b.setQualityFunction(
[](const Shin::NeuronNetwork::Problem &pr,const Shin::NeuronNetwork::Solution &s)->double
[](const Shin::NeuronNetwork::Problem &pr,const Shin::NeuronNetwork::Solution &s)->float
{
std::vector <bool> p=pr;
double expect=0.0;
std::vector <float> p=pr;
float expect=0.0;
if(p[0] && p[1])
expect=0;
else if(p[0] && !p[1])
@@ -60,17 +63,15 @@ int main()
// std::cerr << " returnning " << expect*5.0 << "\n";
return expect*5.0;
return expect*9.0;
});
srand(time(NULL));
std::vector<Shin::NeuronNetwork::Problem*> p;
p.push_back(new X(std::vector<bool>({0,0})));
p.push_back( new X(std::vector<bool>({1,0})));
p.push_back( new X(std::vector<bool>({0,1})));
p.push_back(new X(std::vector<bool>({1,1})));
p.push_back(new X(std::vector<float>({0,0})));
p.push_back( new X(std::vector<float>({1,0})));
p.push_back( new X(std::vector<float>({0,1})));
p.push_back(new X(std::vector<float>({1,1})));
if(test==1)
{
@@ -82,12 +83,13 @@ int main()
}
for(int i=0;i < 500000000;i++)
// for(int i=0;i < 5;i++)
{
double err=b.learnSet(p);
if(i%100000==0)
srand(time(NULL));
if(i%40000==0 || err > targetQuality)
if(i%200000==0 || err > targetQuality)
{
std::cerr << i << " ("<< err <<").\n";
for(int j=0;j<4;j++)