cleaning methods and refactoring abstract classes...
This commit is contained in:
@@ -24,7 +24,13 @@ FFNeuron& FFLayer::operator[](size_t neuron)
|
||||
neurons[i]=new FFNeuron(potentials[i],weights[i],sums[i],inputs[i],lambda);
|
||||
}
|
||||
}
|
||||
|
||||
if(neuron>=layerSize)
|
||||
throw std::out_of_range("Not so many neurons in layers.");
|
||||
|
||||
return *neurons[neuron];
|
||||
|
||||
|
||||
}
|
||||
|
||||
FeedForward::FeedForward(std::initializer_list< int > s, double lam): ACyclicNetwork(lam),layers(s.size())
|
||||
@@ -207,5 +213,9 @@ FFLayer& FeedForward::operator[](size_t l)
|
||||
ffLayers[i]=new FFLayer(layerSizes[i],potentials[i],weights[i],sums[i],inputs[i],lambda);
|
||||
}
|
||||
}
|
||||
|
||||
if(l>=layers)
|
||||
throw std::out_of_range("Not so many layers in network.");
|
||||
|
||||
return *ffLayers[l];
|
||||
}
|
||||
|
||||
@@ -55,7 +55,7 @@ namespace NeuronNetwork
|
||||
class FFLayer: public Layer
|
||||
{
|
||||
public:
|
||||
FFLayer(size_t s, float *p,float **w,float *su,float *in,float lam): neurons(nullptr),layerSize(s),potentials(p),weights(w),sums(su),inputs(in),lambda(lam) {}
|
||||
FFLayer(size_t s, float *p,float **w,float *su,float *in,float lam): layerSize(s),potentials(p),weights(w),sums(su),inputs(in),lambda(lam) {}
|
||||
~FFLayer();
|
||||
|
||||
FFLayer(const FFLayer &) = delete;
|
||||
@@ -64,7 +64,7 @@ namespace NeuronNetwork
|
||||
virtual FFNeuron& operator[](size_t layer) override;
|
||||
inline virtual size_t size() const override {return layerSize;};
|
||||
protected:
|
||||
FFNeuron **neurons;
|
||||
FFNeuron **neurons=nullptr;
|
||||
size_t layerSize;
|
||||
float *potentials;
|
||||
float **weights;
|
||||
@@ -77,26 +77,24 @@ namespace NeuronNetwork
|
||||
{
|
||||
public:
|
||||
FeedForward(std::initializer_list<int> s, double lam=Shin::NeuronNetwork::lambda);
|
||||
virtual ~FeedForward();
|
||||
|
||||
FeedForward(const FeedForward &f) = delete; //TODO
|
||||
FeedForward operator=(const FeedForward &f)=delete;
|
||||
virtual ~FeedForward();
|
||||
|
||||
virtual Solution solve(const Problem& p) override;
|
||||
virtual size_t size() const override { return layers;};
|
||||
virtual FFLayer& operator[](size_t l) override;
|
||||
void setThreads(unsigned t) {threads=t;}
|
||||
protected:
|
||||
void solvePart(float *newSolution, size_t begin, size_t end,size_t prevSize, float* sol,size_t layer);
|
||||
private:
|
||||
FFLayer **ffLayers=nullptr;
|
||||
float ***weights=nullptr;
|
||||
float **potentials=nullptr;
|
||||
public:
|
||||
float **sums=nullptr;
|
||||
float **inputs=nullptr;
|
||||
private:
|
||||
size_t *layerSizes=nullptr;
|
||||
size_t layers;
|
||||
unsigned threads=1;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
@@ -99,11 +99,11 @@ float Shin::NeuronNetwork::Learning::BackPropagation::teach(const Shin::NeuronNe
|
||||
double error=calculateError(solution,a);
|
||||
|
||||
Solution s;
|
||||
if(entropy)
|
||||
if(noise)
|
||||
{
|
||||
for(size_t i=0;i<solution.size();i++)
|
||||
{
|
||||
s.push_back(solution[i]*((double)((100000-entropySize)+(rand()%(entropySize*2+1)))/100000.0));
|
||||
s.push_back(solution[i]*((double)((100000-noiseSize)+(rand()%(noiseSize*2+1)))/100000.0));
|
||||
}
|
||||
propagate(s);
|
||||
}else
|
||||
@@ -112,16 +112,4 @@ float Shin::NeuronNetwork::Learning::BackPropagation::teach(const Shin::NeuronNe
|
||||
}
|
||||
|
||||
return error;
|
||||
}
|
||||
|
||||
|
||||
void Shin::NeuronNetwork::Learning::BackPropagation::setLearningCoeficient(float c)
|
||||
{
|
||||
learningCoeficient=c;
|
||||
}
|
||||
|
||||
|
||||
float Shin::NeuronNetwork::Learning::BackPropagation::correction(float expected, float computed)
|
||||
{
|
||||
return expected-computed;
|
||||
}
|
||||
}
|
||||
@@ -35,19 +35,11 @@ namespace Learning
|
||||
BackPropagation(const Shin::NeuronNetwork::Learning::BackPropagation&) =delete;
|
||||
BackPropagation operator=(const Shin::NeuronNetwork::Learning::BackPropagation&) =delete;
|
||||
|
||||
virtual void propagate(const Shin::NeuronNetwork::Solution& expectation);
|
||||
float teach(const Shin::NeuronNetwork::Problem &p,const Solution &solution);
|
||||
|
||||
void setLearningCoeficient (float);
|
||||
void allowEntropy() {entropy=1;}
|
||||
void setEntropySize(int milipercents) { entropySize=milipercents; }
|
||||
inline void allowThreading() {allowThreads=1; }
|
||||
virtual void propagate(const Shin::NeuronNetwork::Solution& expectation);
|
||||
protected:
|
||||
virtual float correction(float expected, float computed);
|
||||
float learningCoeficient=0.4;
|
||||
bool entropy=0;
|
||||
bool allowThreads=0;
|
||||
int entropySize=500;
|
||||
inline virtual float correction(const float& expected, const float& computed) { return expected - computed;};
|
||||
|
||||
float **deltas=nullptr;
|
||||
};
|
||||
}
|
||||
|
||||
@@ -1,11 +1,6 @@
|
||||
#include "./OpticalBackPropagation"
|
||||
|
||||
Shin::NeuronNetwork::Learning::OpticalBackPropagation::OpticalBackPropagation(FeedForward &n): BackPropagation(n)
|
||||
{
|
||||
setEntropySize(100);
|
||||
}
|
||||
|
||||
float Shin::NeuronNetwork::Learning::OpticalBackPropagation::correction(float expected, float computed)
|
||||
float Shin::NeuronNetwork::Learning::OpticalBackPropagation::correction(const float& expected, const float& computed)
|
||||
{
|
||||
register float tmp=(expected-computed);
|
||||
register float ret=1+exp(tmp*tmp);
|
||||
|
||||
@@ -1,11 +1,8 @@
|
||||
#ifndef _OPT_BACK_PROPAGATION_H_
|
||||
#define _OPT_BACK_PROPAGATION_H_
|
||||
|
||||
#include <math.h>
|
||||
#include <cstddef>
|
||||
|
||||
#include "../FeedForward.h"
|
||||
#include "BackPropagation"
|
||||
#include "BackPropagation.h"
|
||||
|
||||
/*
|
||||
* http://proceedings.informingscience.org/InSITE2005/P106Otai.pdf
|
||||
@@ -20,9 +17,9 @@ namespace Learning
|
||||
class OpticalBackPropagation : public BackPropagation
|
||||
{
|
||||
public:
|
||||
OpticalBackPropagation(FeedForward &n);
|
||||
inline OpticalBackPropagation(FeedForward &n): BackPropagation(n) {}
|
||||
protected:
|
||||
virtual float correction(float expected, float computed) override;
|
||||
virtual float correction(const float& expected, const float& computed) override;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,16 +1,15 @@
|
||||
#ifndef _QLEARNING_H_
|
||||
#define _QLEARNING_H_
|
||||
|
||||
#include <math.h>
|
||||
#include <cstddef>
|
||||
#include <functional>
|
||||
|
||||
#include "BackPropagation.h"
|
||||
#include "OpticalBackPropagation.h"
|
||||
#include "../Problem.h"
|
||||
#include "../FeedForward.h"
|
||||
#include "BackPropagation"
|
||||
#include "Unsupervised"
|
||||
#include "Unsupervised.h"
|
||||
#include "RL/QFunction.h"
|
||||
#include "OpticalBackPropagation.h"
|
||||
#include "functional"
|
||||
|
||||
/*
|
||||
* http://www2.econ.iastate.edu/tesfatsi/RLUsersGuide.ICAC2005.pdf
|
||||
|
||||
@@ -1,11 +1,13 @@
|
||||
#ifndef _Q_FUNCTION_H_
|
||||
#define _Q_FUNCTION_H_
|
||||
|
||||
#include <map>
|
||||
|
||||
#include "../../Solution.h"
|
||||
#include "../../FeedForward"
|
||||
#include "../../FeedForward.h"
|
||||
#include "../BackPropagation.h"
|
||||
#include "../OpticalBackPropagation.h"
|
||||
#include <map>
|
||||
|
||||
namespace Shin
|
||||
{
|
||||
namespace NeuronNetwork
|
||||
|
||||
@@ -1,10 +1,4 @@
|
||||
#include "./Supervised"
|
||||
Shin::NeuronNetwork::Learning::Supervised::Supervised(Shin::NeuronNetwork::FeedForward& n) :network(n)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
|
||||
float Shin::NeuronNetwork::Learning::Supervised::calculateError(const Shin::NeuronNetwork::Solution& expectation, const Shin::NeuronNetwork::Solution& solution)
|
||||
{
|
||||
register float a=0;
|
||||
|
||||
@@ -14,18 +14,33 @@ namespace NeuronNetwork
|
||||
{
|
||||
namespace Learning
|
||||
{
|
||||
const float LearningCoeficient=0.4;
|
||||
class Supervised
|
||||
{
|
||||
public:
|
||||
Supervised() =delete;
|
||||
Supervised(FeedForward &n);
|
||||
Supervised(FeedForward &n) : network(n) {};
|
||||
virtual ~Supervised() {};
|
||||
|
||||
float calculateError(const Solution &expectation,const Solution &solution);
|
||||
virtual float teach(const Shin::NeuronNetwork::Problem &p,const Solution &solution)=0;
|
||||
virtual float teachSet(const std::vector<std::pair<Problem,Solution>> &set) final;
|
||||
|
||||
inline virtual void setLearningCoeficient (const float& coef) { learningCoeficient=coef; };
|
||||
|
||||
inline virtual void allowThreading() final {allowThreads=1;}
|
||||
inline virtual void disableThreading() final {allowThreads=0;}
|
||||
|
||||
inline virtual void allowNoise() final {noise=1;}
|
||||
inline virtual void disableNoise() final {noise=0;}
|
||||
inline virtual void setNoiseSize(const unsigned& milipercents) final { noiseSize=milipercents; }
|
||||
|
||||
protected:
|
||||
FeedForward &network;
|
||||
float learningCoeficient=Shin::NeuronNetwork::Learning::LearningCoeficient;
|
||||
bool allowThreads=0;
|
||||
bool noise=0;
|
||||
unsigned noiseSize=500;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,6 +1 @@
|
||||
#include "./Unsupervised"
|
||||
|
||||
Shin::NeuronNetwork::Learning::Unsupervised::Unsupervised(Shin::NeuronNetwork::FeedForward& n) :network(n)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
@@ -16,9 +16,10 @@ namespace Learning
|
||||
class Unsupervised
|
||||
{
|
||||
public:
|
||||
Unsupervised() =delete;
|
||||
Unsupervised(FeedForward &n);
|
||||
Unsupervised(FeedForward &n): network(n) {};
|
||||
virtual ~Unsupervised() {};
|
||||
|
||||
Unsupervised() =delete;
|
||||
protected:
|
||||
FeedForward &network;
|
||||
};
|
||||
|
||||
@@ -34,9 +34,10 @@ namespace NeuronNetwork
|
||||
virtual Layer& operator[](size_t layer)=0;
|
||||
inline float getLambda() const {return lambda;}
|
||||
|
||||
inline virtual void setThreads(const unsigned&t) final {threads=t;}
|
||||
protected:
|
||||
float lambda;
|
||||
private:
|
||||
unsigned threads=1;
|
||||
};
|
||||
|
||||
class ACyclicNetwork : public Network
|
||||
|
||||
Binary file not shown.
@@ -13,13 +13,13 @@ class X: public Shin::NeuronNetwork::Problem
|
||||
|
||||
int main()
|
||||
{
|
||||
srand(time(NULL));
|
||||
|
||||
for (int test=0;test<2;test++)
|
||||
{
|
||||
Shin::NeuronNetwork::FeedForward q({2,3,1});
|
||||
Shin::NeuronNetwork::Learning::BackPropagation b(q);
|
||||
|
||||
srand(time(NULL));
|
||||
std::vector<std::pair<Shin::NeuronNetwork::Problem, Shin::NeuronNetwork::Solution> > set;
|
||||
set.push_back(std::pair<Shin::NeuronNetwork::Problem, Shin::NeuronNetwork::Solution>(Shin::NeuronNetwork::Problem({0,0}),Shin::NeuronNetwork::Solution({0})));
|
||||
set.push_back(std::pair<Shin::NeuronNetwork::Problem, Shin::NeuronNetwork::Solution>(Shin::NeuronNetwork::Problem({1,0}),Shin::NeuronNetwork::Solution({1})));
|
||||
@@ -28,7 +28,7 @@ int main()
|
||||
if(test)
|
||||
{
|
||||
std::cerr << "Testing with entropy\n";
|
||||
b.allowEntropy();
|
||||
b.allowNoise();
|
||||
}else
|
||||
{
|
||||
std::cerr << "Testing without entropy\n";
|
||||
|
||||
@@ -13,41 +13,29 @@ class X: public Shin::NeuronNetwork::Problem
|
||||
|
||||
int main()
|
||||
{
|
||||
|
||||
srand(time(NULL));
|
||||
for (int test=0;test<2;test++)
|
||||
{
|
||||
Shin::NeuronNetwork::FeedForward q({2,40,1});
|
||||
Shin::NeuronNetwork::Learning::OpticalBackPropagation b(q);
|
||||
b.setLearningCoeficient(0.1);
|
||||
|
||||
srand(time(NULL));
|
||||
std::vector<Shin::NeuronNetwork::Solution*> s;
|
||||
std::vector<Shin::NeuronNetwork::Problem*> p;
|
||||
|
||||
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<float>({0})));
|
||||
p.push_back(new X(std::vector<float>({0,0})));
|
||||
|
||||
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<float>({1})));
|
||||
p.push_back( new X(std::vector<float>({1,0})));
|
||||
|
||||
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<float>({0})));
|
||||
p.push_back(new X(std::vector<float>({1,1})));
|
||||
|
||||
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<float>({1})));
|
||||
p.push_back( new X(std::vector<float>({0,1})));
|
||||
|
||||
b.debugOn();
|
||||
std::vector<std::pair<Shin::NeuronNetwork::Problem, Shin::NeuronNetwork::Solution> > set;
|
||||
set.push_back(std::pair<Shin::NeuronNetwork::Problem, Shin::NeuronNetwork::Solution>(Shin::NeuronNetwork::Problem({0,0}),Shin::NeuronNetwork::Solution({0})));
|
||||
set.push_back(std::pair<Shin::NeuronNetwork::Problem, Shin::NeuronNetwork::Solution>(Shin::NeuronNetwork::Problem({1,0}),Shin::NeuronNetwork::Solution({1})));
|
||||
set.push_back(std::pair<Shin::NeuronNetwork::Problem, Shin::NeuronNetwork::Solution>(Shin::NeuronNetwork::Problem({1,1}),Shin::NeuronNetwork::Solution({0})));
|
||||
set.push_back(std::pair<Shin::NeuronNetwork::Problem, Shin::NeuronNetwork::Solution>(Shin::NeuronNetwork::Problem({0,1}),Shin::NeuronNetwork::Solution({1})));
|
||||
if(test)
|
||||
{
|
||||
std::cerr << "Testing with entropy\n";
|
||||
b.allowEntropy();
|
||||
b.allowNoise();
|
||||
}else
|
||||
{
|
||||
std::cerr << "Testing without entropy\n";
|
||||
}
|
||||
b.setLearningCoeficient(0.1);
|
||||
for(int j=0;;j++)
|
||||
{
|
||||
double err=b.teachSet(p,s);
|
||||
double err=b.teachSet(set);
|
||||
if(err <0.3)
|
||||
{
|
||||
// b.setLearningCoeficient(5);
|
||||
@@ -61,8 +49,8 @@ int main()
|
||||
std::cerr << j << "(" << err <<"):\n";
|
||||
for(int i=0;i<4;i++)
|
||||
{
|
||||
std::cerr << "\t" << i%4 <<". FOR: [" << p[i%4]->operator[](0) << "," <<p[i%4]->operator[](1) << "] res: " <<
|
||||
q.solve(*p[i%4])[0] << " should be " << s[i%4]->operator[](0)<<"\n";
|
||||
std::cerr << "\t" << i%4 <<". FOR: [" << set[i%4].first[0] << "," <<set[i%4].first[1] << "] res: " <<
|
||||
q.solve(set[i%4].first)[0] << " should be " << set[i%4].second[0]<<"\n";
|
||||
}
|
||||
}
|
||||
if(err <0.001)
|
||||
|
||||
@@ -71,7 +71,7 @@ int main()
|
||||
if(test==1)
|
||||
{
|
||||
std::cerr << "Testing with entropy ...\n";
|
||||
b.getPropagator().allowEntropy();
|
||||
b.getPropagator().allowNoise();
|
||||
}else
|
||||
{
|
||||
std::cerr << "Testing without entropy ...\n";
|
||||
|
||||
Reference in New Issue
Block a user