new function to support LSTM Unit
This commit is contained in:
26
include/NeuralNetwork/ActivationFunction/Linear.h
Normal file
26
include/NeuralNetwork/ActivationFunction/Linear.h
Normal file
@@ -0,0 +1,26 @@
|
||||
#pragma once
|
||||
|
||||
#include "./ActivationFunction.h"
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace ActivationFunction {
|
||||
|
||||
class Linear: public ActivationFunction {
|
||||
public:
|
||||
Linear(const float &lambdaP=1.0): lambda(lambdaP) {}
|
||||
inline virtual float derivatedOutput(const float &,const float &) override { return lambda; }
|
||||
inline virtual float operator()(const float &x) override { return x*lambda; };
|
||||
|
||||
virtual ActivationFunction* clone() const override {
|
||||
return new Linear(lambda);
|
||||
}
|
||||
|
||||
virtual std::string stringify() const override {
|
||||
return "{ \"class\": \"NeuralNetwork::ActivationFunction::Linear\", \"lamba\" : "+std::to_string(lambda)+"}";
|
||||
}
|
||||
|
||||
protected:
|
||||
float lambda;
|
||||
};
|
||||
}
|
||||
}
|
||||
@@ -10,7 +10,7 @@ namespace BasisFunction {
|
||||
class BasisFunction {
|
||||
public:
|
||||
virtual ~BasisFunction() {}
|
||||
virtual float operator()(const std::vector<float>& weights, const std::vector<float>& input)=0;
|
||||
virtual float operator()(const std::vector<float>& weights, const std::vector<float>& input) const =0;
|
||||
|
||||
/**
|
||||
* @brief Function returns clone of object
|
||||
|
||||
@@ -17,7 +17,7 @@ namespace BasisFunction {
|
||||
public:
|
||||
Linear() {}
|
||||
|
||||
inline virtual float computeStreaming(const std::vector<float>& weights, const std::vector<float>& input) override {
|
||||
inline virtual float computeStreaming(const std::vector<float>& weights, const std::vector<float>& input) const override {
|
||||
size_t inputSize=input.size();
|
||||
size_t alignedPrev=inputSize-inputSize%4;
|
||||
|
||||
@@ -46,7 +46,7 @@ namespace BasisFunction {
|
||||
return partialSolution.f[0];
|
||||
}
|
||||
|
||||
inline virtual float compute(const std::vector<float>& weights, const std::vector<float>& input) override {
|
||||
inline virtual float compute(const std::vector<float>& weights, const std::vector<float>& input) const override {
|
||||
register float tmp = 0;
|
||||
size_t inputSize=input.size();
|
||||
for(size_t k=0;k<inputSize;k++) {
|
||||
|
||||
34
include/NeuralNetwork/BasisFunction/Product.h
Normal file
34
include/NeuralNetwork/BasisFunction/Product.h
Normal file
@@ -0,0 +1,34 @@
|
||||
#pragma once
|
||||
|
||||
#include "./BasisFunction.h"
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace BasisFunction {
|
||||
|
||||
class Product: public BasisFunction {
|
||||
public:
|
||||
Product() {}
|
||||
|
||||
/**
|
||||
* @brief function computes product of inputs, where weight > 0.5
|
||||
*/
|
||||
inline virtual float operator()(const std::vector<float>& weights, const std::vector<float>& input) const override {
|
||||
float product=1.0;
|
||||
for(size_t i=0;i<weights.size();i++) {
|
||||
if(weights[i] > 0.5)
|
||||
product=product*input[i];
|
||||
}
|
||||
return product;
|
||||
}
|
||||
|
||||
virtual Product* clone() const override {
|
||||
return new Product();
|
||||
}
|
||||
|
||||
virtual std::string stringify() const override {
|
||||
return "{ \"class\": \"NeuralNetwork::BasisFunction::Product\" }";
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
}
|
||||
@@ -13,11 +13,13 @@ namespace BasisFunction {
|
||||
float f[4];
|
||||
};
|
||||
|
||||
virtual float operator()(const std::vector<float>& weights, const std::vector<float>& input) override {
|
||||
virtual float operator()(const std::vector<float>& weights, const std::vector<float>& input) const override {
|
||||
return computeStreaming(weights,input);
|
||||
}
|
||||
virtual float computeStreaming(const std::vector<float>& weights, const std::vector<float>& input) =0;
|
||||
virtual float compute(const std::vector<float>& weights, const std::vector<float>& input) =0;
|
||||
|
||||
virtual float computeStreaming(const std::vector<float>& weights, const std::vector<float>& input) const =0;
|
||||
|
||||
virtual float compute(const std::vector<float>& weights, const std::vector<float>& input) const =0;
|
||||
};
|
||||
}
|
||||
}
|
||||
@@ -1,6 +1,7 @@
|
||||
#include <NeuralNetwork/ActivationFunction/Heaviside.h>
|
||||
#include <NeuralNetwork/ActivationFunction/Sigmoid.h>
|
||||
#include <NeuralNetwork/ActivationFunction/HyperbolicTangent.h>
|
||||
#include <NeuralNetwork/ActivationFunction/Linear.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <cassert>
|
||||
@@ -26,14 +27,14 @@ int main() {
|
||||
|
||||
{
|
||||
NeuralNetwork::ActivationFunction::Sigmoid s(0.7);
|
||||
assert(s(0.1) > 0.517483);
|
||||
assert(s(0.1) < 0.51750);
|
||||
assert(s(0.1) > 0.482407);
|
||||
assert(s(0.1) < 0.482607);
|
||||
|
||||
assert(s(10) > 0.998989);
|
||||
assert(s(10) < 0.999189);
|
||||
assert(s(10) > 0.000901051);
|
||||
assert(s(10) < 0.000921051);
|
||||
}
|
||||
{
|
||||
NeuralNetwork::ActivationFunction::Sigmoid s(5);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid s(-5);
|
||||
assert(s(0.1) > 0.622359);
|
||||
assert(s(0.1) < 0.622559);
|
||||
|
||||
@@ -41,7 +42,7 @@ int main() {
|
||||
assert(s(0.7) < 0.970788);
|
||||
}
|
||||
{
|
||||
NeuralNetwork::ActivationFunction::Sigmoid s(0.7);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid s(-0.7);
|
||||
U.a[0]=0.1;
|
||||
U.a[1]=10;
|
||||
U.v=s(U.v);
|
||||
@@ -52,8 +53,20 @@ int main() {
|
||||
assert(U.a[1] > 0.998989);
|
||||
assert(U.a[1] < 0.999189);
|
||||
}
|
||||
{
|
||||
NeuralNetwork::ActivationFunction::Linear s(1.0);
|
||||
assert(s(0.5) > 0.4999);
|
||||
assert(s(0.5) < 0.5001);
|
||||
|
||||
std::cout << "OK" << std::endl;
|
||||
assert(s(0.0) == 0.0);
|
||||
}
|
||||
{
|
||||
NeuralNetwork::ActivationFunction::Linear s(0.7);
|
||||
assert(s(0.0) == 0.0);
|
||||
|
||||
assert(s(1.0) > 0.6999);
|
||||
assert(s(1.0) < 0.7001);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -1,4 +1,5 @@
|
||||
#include <NeuralNetwork/BasisFunction/Linear.h>
|
||||
#include <NeuralNetwork/BasisFunction/Product.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <cassert>
|
||||
@@ -33,6 +34,14 @@ int main() {
|
||||
assert(220.0==l.computeStreaming(w,w));
|
||||
assert(220.0==l.compute(w,w));
|
||||
}
|
||||
{
|
||||
NeuralNetwork::BasisFunction::Product l;
|
||||
std::vector<float> w({0,0.501,1});
|
||||
std::vector<float> i({0,0.2,0.3});
|
||||
|
||||
assert(l(w,i) > 0.05999);
|
||||
assert(l(w,i) < 0.06001);
|
||||
}
|
||||
/*
|
||||
std::vector<float> w;
|
||||
std::vector<float> i;
|
||||
@@ -61,6 +70,5 @@ int main() {
|
||||
std::cout << "SSE :" << diff.count() << " s\n";
|
||||
}
|
||||
*/
|
||||
std::cout <<"OK" << std::endl;
|
||||
|
||||
}
|
||||
Reference in New Issue
Block a user