quickProapagtion and tests
This commit is contained in:
@@ -29,4 +29,13 @@ add_executable(recurrent recurrent.cpp)
|
||||
target_link_libraries(recurrent NeuralNetwork)
|
||||
|
||||
add_executable(recurrent_perf recurrent_perf.cpp)
|
||||
target_link_libraries(recurrent_perf NeuralNetwork)
|
||||
target_link_libraries(recurrent_perf NeuralNetwork)
|
||||
|
||||
add_executable(quickpropagation quickpropagation.cpp)
|
||||
target_link_libraries(quickpropagation NeuralNetwork)
|
||||
|
||||
add_executable(quickpropagation_perf quickpropagation_perf.cpp)
|
||||
target_link_libraries(quickpropagation_perf NeuralNetwork)
|
||||
|
||||
add_executable(propagation_cmp propagation_cmp.cpp)
|
||||
target_link_libraries(propagation_cmp NeuralNetwork)
|
||||
77
tests/propagation_cmp.cpp
Normal file
77
tests/propagation_cmp.cpp
Normal file
@@ -0,0 +1,77 @@
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include "../include/NeuralNetwork/Learning/BackPropagation.h"
|
||||
#include "../include/NeuralNetwork/Learning/QuickPropagation.h"
|
||||
#include "../include/NeuralNetwork/Learning/CorrectionFunction/Optical.h"
|
||||
#include "../include/NeuralNetwork/Learning/CorrectionFunction/ArcTangent.h"
|
||||
|
||||
#define LEARN(A,AR,B,BR,C,CR,D,DR,FUN,COEF,CLASS) \
|
||||
({\
|
||||
srand(rand);\
|
||||
NeuralNetwork::FeedForward::Network n(2);\
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);\
|
||||
n.appendLayer(2,a);\
|
||||
n.appendLayer(1,a);\
|
||||
n.randomizeWeights();\
|
||||
CLASS prop(n,FUN);\
|
||||
prop.setLearningCoefficient(COEF);\
|
||||
int error=1; int steps = 0; \
|
||||
while(error > 0 && steps <99999) {\
|
||||
steps++;\
|
||||
error=0;\
|
||||
prop.teach(A,{AR});\
|
||||
prop.teach(B,{BR});\
|
||||
prop.teach(C,{CR});\
|
||||
prop.teach(D,{DR});\
|
||||
error+=fabs(n.computeOutput(A)[0]-AR) > 0.1 ? 1:0;\
|
||||
error+=fabs(n.computeOutput(B)[0]-BR) > 0.1 ? 1:0;\
|
||||
error+=fabs(n.computeOutput(C)[0]-CR) > 0.1 ? 1:0;\
|
||||
error+=fabs(n.computeOutput(D)[0]-DR) > 0.1 ? 1:0;\
|
||||
}\
|
||||
steps;\
|
||||
})
|
||||
|
||||
int main() {
|
||||
long rand=(time(NULL));
|
||||
|
||||
const float linearCoef=0.7;
|
||||
const float opticalCoef=0.11;
|
||||
const float arcTangentCoef=0.6;
|
||||
const float arcTangent=1.5;
|
||||
|
||||
{
|
||||
std::cout << "XOR:\n";
|
||||
|
||||
std::cout << "\tBP: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef,NeuralNetwork::Learning::BackPropagation) << "\n";
|
||||
std::cout << "\tQP: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef,NeuralNetwork::Learning::QuickPropagation) << "\n";
|
||||
|
||||
}
|
||||
{
|
||||
std::cout << "AND:\n";
|
||||
|
||||
std::cout << "\tBP: " <<
|
||||
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef,NeuralNetwork::Learning::BackPropagation) << "\n";
|
||||
|
||||
std::cout << "\tQP: " <<
|
||||
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Optical,opticalCoef,NeuralNetwork::Learning::QuickPropagation) << "\n";
|
||||
}
|
||||
{
|
||||
std::cout << "AND:\n";
|
||||
|
||||
std::cout << "\tBP: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef,NeuralNetwork::Learning::BackPropagation) << "\n";
|
||||
|
||||
std::cout << "\tQP: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Optical,opticalCoef,NeuralNetwork::Learning::QuickPropagation) << "\n";
|
||||
}
|
||||
}
|
||||
116
tests/quickpropagation.cpp
Normal file
116
tests/quickpropagation.cpp
Normal file
@@ -0,0 +1,116 @@
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include "../include/NeuralNetwork/Learning/QuickPropagation.h"
|
||||
|
||||
int main() {
|
||||
{ // XOR problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::QuickPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
}
|
||||
{ // AND problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::QuickPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,1},{1});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{0});
|
||||
prop.teach({1,0},{0});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
}
|
||||
{ // NOT AND problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::QuickPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{1});
|
||||
prop.teach({0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
}
|
||||
}
|
||||
26
tests/quickpropagation_perf.cpp
Normal file
26
tests/quickpropagation_perf.cpp
Normal file
@@ -0,0 +1,26 @@
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include "../include/NeuralNetwork/Learning/QuickPropagation.h"
|
||||
|
||||
int main() {
|
||||
{ // XOR problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(200,a);
|
||||
n.appendLayer(500,a);
|
||||
n.appendLayer(900,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::QuickPropagation prop(n);
|
||||
for(int i=0;i<100;i++) {
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user