reinforcement with randomising

This commit is contained in:
2014-11-11 15:34:09 +01:00
parent 9ef4274396
commit 42af5a4d2b
10 changed files with 223 additions and 24 deletions

View File

@@ -21,7 +21,7 @@ FFNeuron* FFLayer::operator[](int neuron)
neurons=new FFNeuron*[layerSize];
for(size_t i=0;i<layerSize;i++)
{
neurons[i]=new FFNeuron(&potentials[i],weights[i],&sums[i]);
neurons[i]=new FFNeuron(&potentials[i],weights[i],&sums[i],lambda);
}
}
return neurons[neuron];
@@ -81,7 +81,7 @@ Solution FeedForwardNetworkQuick::solve(const Problem& p)
q+=sol[k]*weights[i][j][k];
}else
{
q+=(1.0/(1.0+exp(-0.5*sol[k])))*weights[i][j][k];
q+=(1.0/(1.0+exp(-lambda*sol[k])))*weights[i][j][k];
}
}
newSolution[j]=q;
@@ -92,7 +92,7 @@ Solution FeedForwardNetworkQuick::solve(const Problem& p)
std::vector<double> ret;
for(size_t i=1;i<prevSize;i++)
{
ret.push_back((1.0/(1.0+exp(-0.5*sol[i]))));
ret.push_back((1.0/(1.0+exp(-lambda*sol[i]))));
}
return ret;
}
@@ -104,7 +104,7 @@ FFLayer* FeedForwardNetworkQuick::operator[](int l)
ffLayers=new FFLayer*[layers];
for(size_t i=0;i<layers;i++)
{
ffLayers[i]=new FFLayer(layerSizes[i],potentials[i],weights[i],sums[i+1]);
ffLayers[i]=new FFLayer(layerSizes[i],potentials[i],weights[i],sums[i+1],lambda);
}
}
return ffLayers[l];

View File

@@ -12,6 +12,8 @@
#include <iostream>
#include <math.h>
#define LAMBDA 0.8
namespace Shin
{
namespace NeuronNetwork
@@ -22,7 +24,7 @@ namespace NeuronNetwork
FFNeuron() = delete;
FFNeuron(const FFNeuron&) = delete;
FFNeuron& operator=(const FFNeuron&) = delete;
FFNeuron(double *pot, double *w, double*s):potential(pot),weights(w),sum(s) { }
FFNeuron(double *pot, double *w, double*s,double lam):potential(pot),weights(w),sum(s),lambda(lam) { }
double getPotential() {return *potential;}
void setPotential(double p) { *potential=p;}
@@ -30,17 +32,18 @@ namespace NeuronNetwork
void setWeight(unsigned int i,double p) { weights[i]=p; }
inline double output()
{
return 1.0/(1.0+(exp(-0.5*input())));
return 1.0/(1.0+(exp(-lambda*input())));
return input();
// register double tmp=;
// return NAN==tmp?0:tmp;
/* > *potential? 1 :0;*/ }
inline double input() { return *sum; }
inline double derivatedOutput() { return output()*(1.0-output()); };
inline double derivatedOutput() { return lambda*output()*(1.0-output()); };
protected:
double *potential;
double *weights;
double *sum;
double lambda;
private:
};
@@ -49,7 +52,7 @@ namespace NeuronNetwork
public:
FFLayer(const FFLayer &) =delete;
FFLayer operator=(const FFLayer &) = delete;
FFLayer(size_t s, double *p,double **w,double *su): neurons(nullptr),layerSize(s),potentials(p),weights(w),sums(su) {}
FFLayer(size_t s, double *p,double **w,double *su,double lam): neurons(nullptr),layerSize(s),potentials(p),weights(w),sums(su),lambda(lam) {}
~FFLayer();
FFNeuron* operator[](int neuron);
size_t size() const {return layerSize;};
@@ -59,6 +62,7 @@ namespace NeuronNetwork
double *potentials;
double **weights;
double *sums;
double lambda;
};
class FeedForwardNetworkQuick:public ACyclicNetwork
@@ -66,7 +70,7 @@ namespace NeuronNetwork
public:
FeedForwardNetworkQuick(const FeedForwardNetworkQuick &f) = delete; //TODO
FeedForwardNetworkQuick operator=(const FeedForwardNetworkQuick &f)=delete;
template<typename... Args>inline FeedForwardNetworkQuick(std::initializer_list<int> s):ffLayers(nullptr),weights(nullptr),potentials(nullptr),sums(nullptr),layerSizes(nullptr),layers(s.size())
template<typename... Args>inline FeedForwardNetworkQuick(std::initializer_list<int> s, double lam=LAMBDA):ffLayers(nullptr),weights(nullptr),potentials(nullptr),sums(nullptr),layerSizes(nullptr),layers(s.size()),lambda(lam)
{
weights= new double**[s.size()];
potentials= new double*[s.size()];
@@ -114,8 +118,10 @@ namespace NeuronNetwork
double **potentials;
public:
double **sums;
private:
size_t *layerSizes;
size_t layers;
double lambda;
};
}

View File

@@ -15,15 +15,12 @@ double Shin::NeuronNetwork::Learning::BackPropagation::calculateError(const Shin
return a;
}
const double LAMBDA = 0.5;
void Shin::NeuronNetwork::Learning::BackPropagation::propagate(const Shin::NeuronNetwork::Solution& expectation)
{
double **deltas;
deltas=new double*[network.size()];
for(int i=(int)network.size()-1;i>=0;i--)
{
std::cerr << i << "XXXXXXXXXXXXXX\n";
deltas[i]=new double[network[i]->size()];
deltas[i][0]=0.0;
if(i==(int)network.size()-1)
@@ -57,7 +54,7 @@ void Shin::NeuronNetwork::Learning::BackPropagation::propagate(const Shin::Neuro
for(size_t j=1;j<network[i]->size();j++)
{
network[i]->operator[](j)->setWeight(0,network[i]->operator[](j)->getWeight(0)+0.5*deltas[i][j]);
network[i]->operator[](j)->setWeight(0,network[i]->operator[](j)->getWeight(0)+deltas[i][j]*learningCoeficient);
for(size_t k=1;k<max;k++)
{
network[i]->operator[](j)->setWeight(k,
@@ -85,3 +82,10 @@ double Shin::NeuronNetwork::Learning::BackPropagation::teach(const Shin::NeuronN
// std::cerr << "error: " << error << "\n";
return error;
}
void Shin::NeuronNetwork::Learning::BackPropagation::setLearningCoeficient(double c)
{
learningCoeficient=c;
}

View File

@@ -27,8 +27,9 @@ namespace Learning
double calculateError(const Solution &expectation,const Solution &solution);
void propagate(const Shin::NeuronNetwork::Solution& expectation);
double teach(const Shin::NeuronNetwork::Problem &p,const Solution &solution);
void setLearningCoeficient (double);
protected:
double learningCoeficient=0.8;
double learningCoeficient=0.4;
};
}
}

View File

@@ -1 +1,91 @@
#include "./Reinforcement"
Shin::NeuronNetwork::Learning::Reinforcement::Reinforcement(Shin::NeuronNetwork::FeedForwardNetworkQuick& n): Unsupervised(n), p(n)
{
p.setLearningCoeficient(4.5);
}
void Shin::NeuronNetwork::Learning::Reinforcement::setQualityFunction(std::function< double(const Solution &s) > f)
{
qualityFunction=f;
}
double Shin::NeuronNetwork::Learning::Reinforcement::learn(const Shin::NeuronNetwork::Problem& problem)
{
Solution s=network.solve(problem);
double quality=qualityFunction(s);
std::vector<double> q;
for(register size_t j=0;j<s.size();j++)
{
q.push_back(s[j]*((double)(990+(rand()%21))/1000.0));
}
if(quality <= 0)
{
for(register size_t j=0;j<s.size();j++)
{
do{
q[j]=((double)(10+rand()%80))/100.0;
}while(fabs(q[j]-s[j]) < 0.1);
}
}
for(register int i=abs((int)quality);i>=0;i--)
{
p.propagate(q);
}
return quality;
}
void Shin::NeuronNetwork::Learning::Reinforcement::propagate(const Shin::NeuronNetwork::Solution& expectation,bool random)
{
double **deltas;
deltas=new double*[network.size()];
for(int i=(int)network.size()-1;i>=0;i--)
{
deltas[i]=new double[network[i]->size()];
deltas[i][0]=0.0;
if(i==(int)network.size()-1)
{
for(size_t j=1;j<network[i]->size();j++)
{
deltas[i][j]= (expectation[j-1]-network[i]->operator[](j)->output())*network[i]->operator[](j)->derivatedOutput();
// std::cerr << "X "<< deltas[i][j] <" Z ";
}
}else
{
for(size_t j=1;j<network[i]->size();j++)
{
register double deltasWeight = 0;
for(size_t k=1;k<network[i+1]->size();k++)
{
deltasWeight+=deltas[i+1][k]*network[i+1]->operator[](k)->getWeight(j);
}
deltas[i][j]=deltasWeight*network[i]->operator[](j)->derivatedOutput();
}
}
}
for(size_t i=0;i<network.size();i++)
{
size_t max;
if(i==0)
max=network[i]->size();
else
max=network[i-1]->size();
for(size_t j=1;j<network[i]->size();j++)
{
network[i]->operator[](j)->setWeight(0,network[i]->operator[](j)->getWeight(0)+deltas[i][j]*learningCoeficient);
for(size_t k=1;k<max;k++)
{
network[i]->operator[](j)->setWeight(k,
network[i]->operator[](j)->getWeight(k)+learningCoeficient* deltas[i][j]*
(i==0? network.sums[0][k]:(double)network[i-1]->operator[](k)->output()));
}
}
}
for(size_t i=0;i<network.size();i++)
{
delete[] deltas[i];
}
delete[] deltas;
}

View File

@@ -4,9 +4,11 @@
#include <math.h>
#include <cstddef>
#include "../Solution.h"
#include "../Problem.h"
#include "../FeedForwardQuick.h"
#include "BackPropagation"
#include "Unsupervised"
#include "functional"
/*
*
@@ -24,11 +26,15 @@ namespace Learning
{
public:
Reinforcement(FeedForwardNetworkQuick &n);
double calculateError(const Solution &expectation,const Solution &solution);
void propagate(const Shin::NeuronNetwork::Solution& expectation);
double teach(const Shin::NeuronNetwork::Problem &p,const Solution &solution);
void setQualityFunction(std::function<double(const Solution &s)>);
double learn(const Shin::NeuronNetwork::Problem &p);
void propagate(const Shin::NeuronNetwork::Solution& expectation,bool random=0);
void setCoef(double q) {p.setLearningCoeficient(q);}
protected:
double learningCoeficient=0.8;
double learningCoeficient=3;
std::function<double(const Solution &s)> qualityFunction=nullptr;
BackPropagation p;
};
}
}

View File

@@ -19,8 +19,6 @@ namespace Learning
Unsupervised() =delete;
Unsupervised(FeedForwardNetworkQuick &n);
virtual ~Unsupervised() {};
virtual double calculateError(const Solution &expectation,const Solution &solution)=0;
virtual double teach(const Shin::NeuronNetwork::Problem &p,const Solution &solution)=0;
void debugOn();
void debugOff();
protected:

View File

@@ -1,6 +1,6 @@
OBJFILES= Neuron.o ./Network.o FeedForward.o FeedForwardQuick.o \
OBJFILES= Neuron.o Network.o FeedForward.o FeedForwardQuick.o \
Learning/Supervised.o Learning/Unsupervised.o Learning/Reinforcement.o Learning/BackPropagation.o \
./Solution.o ./Problem.o
Solution.o Problem.o
LIBNAME=NeuronNetwork

View File

@@ -2,7 +2,7 @@ include ../Makefile.const
LIB_DIR = ../lib
GEN_TESTS=g-01 g-02
NN_TESTS=nn-01 nn-02 nn-03 nn-04
NN_TESTS= nn-reinforcement nn-01 nn-02 nn-03 nn-04
ALL_TESTS=$(NN_TESTS) $(GEN_TESTS)
LIBS=$(LIB_DIR)/Genetics.a $(LIB_DIR)/NeuronNetwork.a

View File

@@ -0,0 +1,94 @@
#include "../src/NeuronNetwork/FeedForwardQuick"
#include "../src/NeuronNetwork/Learning/Reinforcement.h"
#include "../src/NeuronNetwork/Solution.h"
#include <iostream>
#include <vector>
class X: public Shin::NeuronNetwork::Problem
{
public:
X(const X& a) :q(a.q) {}
X(const std::vector<bool> &a):q(a) {}
std::vector<bool> representation() const
{
return q;
}
protected:
std::vector<bool> q;
};
int main()
{
srand(time(NULL));
std::vector<X> p;
p.push_back(X(std::vector<bool>({0,0})));
p.push_back(X(std::vector<bool>({1,1})));
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,6,2});
Shin::NeuronNetwork::Learning::Reinforcement b(q);
int i=0;
b.setQualityFunction(
[&i](const Shin::NeuronNetwork::Solution &s)->double
{
if(i%2==0)
{
//ocekavame 1
int e=(s[0]-0.80)*15.0;//+(abs(s[1])-0.5)*100.0;
return e;
}else
{
//ocekavame 0
int e=(0.20-s[0])*15.0;//+(0.4-abs(s[1]))*100.0;
return e;
}
return 1.0;
});
for(i=0;i < 500000000;i++)
{
if(i==75000)
{
std::cerr << "SSSSSS1XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\n";
b.setCoef(1);
}
if(i==150000)
{
std::cerr << "SSSSSS1XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\n";
b.setCoef(0.51);
}
if(i==300000)
{
std::cerr << "SSSSSS2XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\n";
b.setCoef(0.15);
}
b.learn(p[i%2]);
if(i%100000==0)
srand(time(NULL));
if(i%10000==0)
for(int j=0;j<2;j++)
{
std::cerr << j%4 <<". FOR: [" << p[j%4].representation()[0] << "," <<p[j%4].representation()[0] << "] res: " << q.solve(p[j%4])[0] << "\n";
}
}
/* int i=0;
std::cerr << i%4 <<". FOR: [" << p[i%2].representation()[0] << "] res: " << q.solve(p[i%2])[0] << " should be " << s[i%2][0]<<"\n";
for(int i=0;i<2000;i++)sa
{
b.teach(p[i%2],s[i%2]);
std::cerr << i%2 <<". FOR: [" << p[i%2].representation()[0] << "] res: " << q.solve(p[i%2])[0] << " should be " << s[i%2][0]<<"\n";
}
b.debugOn();
for(int i=0;i<2;i++)
{
b.teach(p[i%2],s[i%2]);
std::cerr << i%4 <<". FOR: [" << p[i%4].representation()[0] << "," <<p[i%4].representation()[0] << "] res: " << q.solve(p[i%4])[0] << " should be " <<
s[i%4][0]<<"\n";
}
b.debugOff();*/
}