modified learning algorithms
This commit is contained in:
@@ -13,13 +13,14 @@ namespace Learning {
|
||||
class BackPropagation {
|
||||
|
||||
public:
|
||||
BackPropagation(): learningCoefficient(0.4) {
|
||||
|
||||
inline BackPropagation(FeedForward::Network &feedForwardNetwork): network(feedForwardNetwork), learningCoefficient(0.4), deltas() {
|
||||
resize();
|
||||
}
|
||||
|
||||
virtual ~BackPropagation() {
|
||||
}
|
||||
|
||||
void teach(FeedForward::Network &n,const std::vector<float> &input, const std::vector<float> &output);
|
||||
void teach(const std::vector<float> &input, const std::vector<float> &output);
|
||||
|
||||
inline virtual void setLearningCoefficient (const float& coefficient) { learningCoefficient=coefficient; }
|
||||
|
||||
@@ -27,7 +28,22 @@ namespace Learning {
|
||||
inline virtual float correction(const float & expected, const float &computed) const {
|
||||
return expected-computed;
|
||||
};
|
||||
|
||||
inline void resize() {
|
||||
if(deltas.size()!=network.size())
|
||||
deltas.resize(network.size());
|
||||
|
||||
for(std::size_t i=0; i < network.size(); i++) {
|
||||
if(deltas[i].size()!=network[i].size())
|
||||
deltas[i].resize(network[i].size());
|
||||
}
|
||||
}
|
||||
|
||||
FeedForward::Network &network;
|
||||
|
||||
float learningCoefficient;
|
||||
|
||||
std::vector<std::vector<float>> deltas;
|
||||
};
|
||||
}
|
||||
}
|
||||
@@ -11,7 +11,7 @@ namespace Learning {
|
||||
class OpticalBackPropagation : public BackPropagation {
|
||||
|
||||
public:
|
||||
OpticalBackPropagation(): BackPropagation() {
|
||||
OpticalBackPropagation(FeedForward::Network &feedForwardNetwork): BackPropagation(feedForwardNetwork) {
|
||||
|
||||
}
|
||||
virtual ~OpticalBackPropagation() {
|
||||
|
||||
@@ -21,6 +21,7 @@ float NeuralNetwork::BasisFunction::Linear::operator()(const std::vector<float>
|
||||
#ifndef USE_FMA
|
||||
__m256 tmp;
|
||||
#endif
|
||||
|
||||
for(size_t k=0;k<alignedPrev;k+=8) {
|
||||
//TODO: assignement!! -- possible speedup
|
||||
#ifdef USE_FMA
|
||||
|
||||
@@ -3,17 +3,11 @@
|
||||
#include <cassert>
|
||||
#include <immintrin.h>
|
||||
|
||||
void NeuralNetwork::Learning::BackPropagation::teach(FeedForward::Network &network,const std::vector<float> &input, const std::vector<float> &expectation) {
|
||||
void NeuralNetwork::Learning::BackPropagation::teach(const std::vector<float> &input, const std::vector<float> &expectation) {
|
||||
|
||||
network.computeOutput(input);
|
||||
std::vector<std::vector<float>> deltas;
|
||||
|
||||
deltas.resize(network.size());
|
||||
|
||||
for(std::size_t i=0; i < network.size(); i++) {
|
||||
deltas[i].resize(network[i].size());
|
||||
deltas[i][0]=0.0;
|
||||
}
|
||||
resize();
|
||||
|
||||
auto& outputLayer=network[network.size()-1];
|
||||
for(std::size_t j=1;j<outputLayer.size();j++) {
|
||||
@@ -43,23 +37,6 @@ void NeuralNetwork::Learning::BackPropagation::teach(FeedForward::Network &netwo
|
||||
std::size_t prevLayerSize=prevLayer.size();
|
||||
std::size_t layerSize=layer.size();
|
||||
|
||||
/*
|
||||
#ifdef USE_AVX
|
||||
|
||||
std::size_t alignedPrev=layerSize-layerSize%8;
|
||||
|
||||
__m256 learningCoefficientAVX=_mm256_set_ps(learningCoefficient, learningCoefficient, learningCoefficient, learningCoefficient,
|
||||
learningCoefficient, learningCoefficient, learningCoefficient, learningCoefficient);
|
||||
|
||||
float* tmp =deltas[layerIndex].data();
|
||||
for(std::size_t j=1;j<alignedPrev;j+=8) {
|
||||
_mm256_storeu_ps(tmp+j,_mm256_mul_ps(learningCoefficientAVX,_mm256_loadu_ps(tmp+j)));
|
||||
}
|
||||
for(std::size_t j =alignedPrev; j < layerSize;j++) {
|
||||
deltas[layerIndex][j]*=learningCoefficient;
|
||||
}
|
||||
#endif
|
||||
*/
|
||||
for(std::size_t j=1;j<layerSize;j++) {
|
||||
|
||||
deltas[layerIndex][j]*=learningCoefficient;
|
||||
|
||||
@@ -13,12 +13,12 @@ int main() {
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::BackPropagation prop;
|
||||
NeuralNetwork::Learning::BackPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach(n,{1,0},{1});
|
||||
prop.teach(n,{1,1},{0});
|
||||
prop.teach(n,{0,0},{0});
|
||||
prop.teach(n,{0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
|
||||
{
|
||||
@@ -49,12 +49,12 @@ int main() {
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::BackPropagation prop;
|
||||
NeuralNetwork::Learning::BackPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach(n,{1,1},{1});
|
||||
prop.teach(n,{0,0},{0});
|
||||
prop.teach(n,{0,1},{0});
|
||||
prop.teach(n,{1,0},{0});
|
||||
prop.teach({1,1},{1});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{0});
|
||||
prop.teach({1,0},{0});
|
||||
}
|
||||
|
||||
{
|
||||
@@ -85,12 +85,12 @@ int main() {
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::BackPropagation prop;
|
||||
NeuralNetwork::Learning::BackPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach(n,{1,1},{0});
|
||||
prop.teach(n,{0,0},{1});
|
||||
prop.teach(n,{0,1},{1});
|
||||
prop.teach(n,{1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{1});
|
||||
prop.teach({0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
}
|
||||
|
||||
{
|
||||
|
||||
@@ -15,12 +15,12 @@ int main() {
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::BackPropagation prop;
|
||||
NeuralNetwork::Learning::BackPropagation prop(n);
|
||||
for(int i=0;i<100;i++) {
|
||||
prop.teach(n,{1,0},{1});
|
||||
prop.teach(n,{1,1},{0});
|
||||
prop.teach(n,{0,0},{0});
|
||||
prop.teach(n,{0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -13,12 +13,12 @@ int main() {
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop;
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach(n,{1,0},{1});
|
||||
prop.teach(n,{1,1},{0});
|
||||
prop.teach(n,{0,0},{0});
|
||||
prop.teach(n,{0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
|
||||
{
|
||||
@@ -49,12 +49,12 @@ int main() {
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop;
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach(n,{1,1},{1});
|
||||
prop.teach(n,{0,0},{0});
|
||||
prop.teach(n,{0,1},{0});
|
||||
prop.teach(n,{1,0},{0});
|
||||
prop.teach({1,1},{1});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{0});
|
||||
prop.teach({1,0},{0});
|
||||
}
|
||||
|
||||
{
|
||||
@@ -85,12 +85,12 @@ int main() {
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop;
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach(n,{1,1},{0});
|
||||
prop.teach(n,{0,0},{1});
|
||||
prop.teach(n,{0,1},{1});
|
||||
prop.teach(n,{1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{1});
|
||||
prop.teach({0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
}
|
||||
|
||||
{
|
||||
|
||||
@@ -15,7 +15,6 @@ int main() {
|
||||
|
||||
for(size_t i=0;i<solutions.size();i++) {
|
||||
float res= a.computeOutput({1,0.7})[0];
|
||||
float resA=solutions[i];
|
||||
assert(res > solutions[i]*0.999 && res < solutions[i]*1.001);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user