modified learning algorithms
This commit is contained in:
@@ -21,6 +21,7 @@ float NeuralNetwork::BasisFunction::Linear::operator()(const std::vector<float>
|
||||
#ifndef USE_FMA
|
||||
__m256 tmp;
|
||||
#endif
|
||||
|
||||
for(size_t k=0;k<alignedPrev;k+=8) {
|
||||
//TODO: assignement!! -- possible speedup
|
||||
#ifdef USE_FMA
|
||||
|
||||
@@ -3,17 +3,11 @@
|
||||
#include <cassert>
|
||||
#include <immintrin.h>
|
||||
|
||||
void NeuralNetwork::Learning::BackPropagation::teach(FeedForward::Network &network,const std::vector<float> &input, const std::vector<float> &expectation) {
|
||||
void NeuralNetwork::Learning::BackPropagation::teach(const std::vector<float> &input, const std::vector<float> &expectation) {
|
||||
|
||||
network.computeOutput(input);
|
||||
std::vector<std::vector<float>> deltas;
|
||||
|
||||
deltas.resize(network.size());
|
||||
|
||||
for(std::size_t i=0; i < network.size(); i++) {
|
||||
deltas[i].resize(network[i].size());
|
||||
deltas[i][0]=0.0;
|
||||
}
|
||||
resize();
|
||||
|
||||
auto& outputLayer=network[network.size()-1];
|
||||
for(std::size_t j=1;j<outputLayer.size();j++) {
|
||||
@@ -43,23 +37,6 @@ void NeuralNetwork::Learning::BackPropagation::teach(FeedForward::Network &netwo
|
||||
std::size_t prevLayerSize=prevLayer.size();
|
||||
std::size_t layerSize=layer.size();
|
||||
|
||||
/*
|
||||
#ifdef USE_AVX
|
||||
|
||||
std::size_t alignedPrev=layerSize-layerSize%8;
|
||||
|
||||
__m256 learningCoefficientAVX=_mm256_set_ps(learningCoefficient, learningCoefficient, learningCoefficient, learningCoefficient,
|
||||
learningCoefficient, learningCoefficient, learningCoefficient, learningCoefficient);
|
||||
|
||||
float* tmp =deltas[layerIndex].data();
|
||||
for(std::size_t j=1;j<alignedPrev;j+=8) {
|
||||
_mm256_storeu_ps(tmp+j,_mm256_mul_ps(learningCoefficientAVX,_mm256_loadu_ps(tmp+j)));
|
||||
}
|
||||
for(std::size_t j =alignedPrev; j < layerSize;j++) {
|
||||
deltas[layerIndex][j]*=learningCoefficient;
|
||||
}
|
||||
#endif
|
||||
*/
|
||||
for(std::size_t j=1;j<layerSize;j++) {
|
||||
|
||||
deltas[layerIndex][j]*=learningCoefficient;
|
||||
|
||||
Reference in New Issue
Block a user