modified learning algorithms
This commit is contained in:
@@ -13,12 +13,12 @@ int main() {
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::BackPropagation prop;
|
||||
NeuralNetwork::Learning::BackPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach(n,{1,0},{1});
|
||||
prop.teach(n,{1,1},{0});
|
||||
prop.teach(n,{0,0},{0});
|
||||
prop.teach(n,{0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
|
||||
{
|
||||
@@ -49,12 +49,12 @@ int main() {
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::BackPropagation prop;
|
||||
NeuralNetwork::Learning::BackPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach(n,{1,1},{1});
|
||||
prop.teach(n,{0,0},{0});
|
||||
prop.teach(n,{0,1},{0});
|
||||
prop.teach(n,{1,0},{0});
|
||||
prop.teach({1,1},{1});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{0});
|
||||
prop.teach({1,0},{0});
|
||||
}
|
||||
|
||||
{
|
||||
@@ -85,12 +85,12 @@ int main() {
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::BackPropagation prop;
|
||||
NeuralNetwork::Learning::BackPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach(n,{1,1},{0});
|
||||
prop.teach(n,{0,0},{1});
|
||||
prop.teach(n,{0,1},{1});
|
||||
prop.teach(n,{1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{1});
|
||||
prop.teach({0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
}
|
||||
|
||||
{
|
||||
|
||||
@@ -15,12 +15,12 @@ int main() {
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::BackPropagation prop;
|
||||
NeuralNetwork::Learning::BackPropagation prop(n);
|
||||
for(int i=0;i<100;i++) {
|
||||
prop.teach(n,{1,0},{1});
|
||||
prop.teach(n,{1,1},{0});
|
||||
prop.teach(n,{0,0},{0});
|
||||
prop.teach(n,{0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -13,12 +13,12 @@ int main() {
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop;
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach(n,{1,0},{1});
|
||||
prop.teach(n,{1,1},{0});
|
||||
prop.teach(n,{0,0},{0});
|
||||
prop.teach(n,{0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
|
||||
{
|
||||
@@ -49,12 +49,12 @@ int main() {
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop;
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach(n,{1,1},{1});
|
||||
prop.teach(n,{0,0},{0});
|
||||
prop.teach(n,{0,1},{0});
|
||||
prop.teach(n,{1,0},{0});
|
||||
prop.teach({1,1},{1});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{0});
|
||||
prop.teach({1,0},{0});
|
||||
}
|
||||
|
||||
{
|
||||
@@ -85,12 +85,12 @@ int main() {
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop;
|
||||
NeuralNetwork::Learning::OpticalBackPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach(n,{1,1},{0});
|
||||
prop.teach(n,{0,0},{1});
|
||||
prop.teach(n,{0,1},{1});
|
||||
prop.teach(n,{1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{1});
|
||||
prop.teach({0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
}
|
||||
|
||||
{
|
||||
|
||||
@@ -15,7 +15,6 @@ int main() {
|
||||
|
||||
for(size_t i=0;i<solutions.size();i++) {
|
||||
float res= a.computeOutput({1,0.7})[0];
|
||||
float resA=solutions[i];
|
||||
assert(res > solutions[i]*0.999 && res < solutions[i]*1.001);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user