Modified FeedForward to allow set activation to whole Layer and added XOR test for FF

This commit is contained in:
2016-02-03 21:16:35 +01:00
parent ea4ce22867
commit 567fcd2373
5 changed files with 64 additions and 35 deletions

View File

@@ -16,10 +16,10 @@ namespace FeedForward {
class Layer : public Stringifiable {
public:
Layer(std::size_t size = 0):neurons() {
Layer(std::size_t size, const ActivationFunction::ActivationFunction &activationFunction):neurons() {
neurons.push_back(new BiasNeuron);
for(std::size_t i=0;i<size;i++) {
neurons.push_back(new Neuron(neurons.size()));
neurons.push_back(new Neuron(neurons.size(),activationFunction));
}
}

View File

@@ -9,6 +9,8 @@
#include <iomanip>
#include <limits>
#include <iostream>
namespace NeuralNetwork {
namespace FeedForward {
@@ -29,24 +31,27 @@ namespace FeedForward {
appendLayer(_inputSize);
};
Layer& appendLayer(std::size_t size=1) {
layers.push_back(Layer(size));
if(layers.size() > 1)
layers.back().setInputSize(layers[layers.size()-2].size());
return layers.back();
}
Layer& operator[](const std::size_t &id) {
return layers[id];
}
/**
* @brief Virtual destructor for Network
*/
virtual ~Network() {
};
for(auto &layer:layers) {
delete layer;
}
}
Layer& appendLayer(std::size_t size=1, const ActivationFunction::ActivationFunction &activationFunction=ActivationFunction::Sigmoid(-4.9)) {
layers.push_back(new Layer(size,activationFunction));
if(layers.size() > 1)
layers.back()->setInputSize(layers[layers.size()-2]->size());
return *layers[layers.size()-1];//.back();
}
Layer& operator[](const std::size_t &id) {
return *layers[id];
}
/**
* @brief This is a function to compute one iterations of network
@@ -66,7 +71,7 @@ namespace FeedForward {
if(!first) {
out << ",";
}
out << layer;
out << *layer;
first=false;
}
out << "]";
@@ -74,7 +79,7 @@ namespace FeedForward {
}
protected:
std::vector<Layer> layers;
std::vector<Layer*> layers;
};
}
}

View File

@@ -92,9 +92,10 @@ namespace NeuralNetwork
class Neuron: public NeuronInterface
{
public:
Neuron(unsigned long _id=0): NeuronInterface(), basis(new BasisFunction::Linear),
activation(new ActivationFunction::Sigmoid(-4.9)),
id_(_id),weights(_id+1),_output(0),_value(0) {
Neuron(unsigned long _id=0, const ActivationFunction::ActivationFunction &activationFunction=ActivationFunction::Sigmoid(-4.9)):
NeuronInterface(), basis(new BasisFunction::Linear),
activation(activationFunction.clone()),
id_(_id),weights(_id+1),_output(0),_value(0) {
}
Neuron(const Neuron &r): NeuronInterface(), basis(r.basis->clone()), activation(r.activation->clone()),id_(r.id_),

View File

@@ -9,16 +9,16 @@ std::vector<float> NeuralNetwork::FeedForward::Network::computeOutput(const std:
// 0 is bias
partial1[0]=1.0;
for(int i=0;i<input.size();i++) {
for(std::size_t i=0;i<input.size();i++) {
partial1[i+1]=input[i];
}
for(std::size_t i=1;i<layers.size();i++) {
layers[i].solve(*partialInputPtr,*partialOutputPtr);
layers[i]->solve(*partialInputPtr,*partialOutputPtr);
std::swap(partialInputPtr,partialOutputPtr);
}
for(int i=0;i<partialInputPtr->size()-1;i++) {
for(std::size_t i=0;i<partialInputPtr->size()-1;i++) {
partialInputPtr->operator[](i)=partialInputPtr->operator[](i+1);
}

View File

@@ -1,5 +1,6 @@
#include <NeuralNetwork/FeedForward/Network.h>
#include <cassert>
#include <iostream>
void printVec(const std::vector<float> &v) {
@@ -10,22 +11,44 @@ void printVec(const std::vector<float> &v) {
}
int main() {
NeuralNetwork::FeedForward::Network n(2);
{ // XOR problem
NeuralNetwork::FeedForward::Network n(2);
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
NeuralNetwork::FeedForward::Layer &hidden=n.appendLayer(2,a);
NeuralNetwork::FeedForward::Layer &out = n.appendLayer(1,a);
NeuralNetwork::FeedForward::Layer &sec=n.appendLayer(4);
hidden[1].setWeight(n[0][0],7);
hidden[1].setWeight(n[0][1],-4.7);
hidden[1].setWeight(n[0][2],-4.7);
NeuralNetwork::FeedForward::Layer &in = n[0];
hidden[2].setWeight(n[0][0],2.6);
hidden[2].setWeight(n[0][1],-6.4);
hidden[2].setWeight(n[0][2],-6.4);
NeuralNetwork::FeedForward::Layer &t = n.appendLayer(4);
sec[1].setWeight(in[1],-1.0);
out[1].setWeight(hidden[0],-4.5);
out[1].setWeight(hidden[1],9.6);
out[1].setWeight(hidden[2],-6.8);
sec[1].setWeight(in[2],-1.0);
sec[2].setWeight(in[2],-1.0);
t[2].setWeight(sec[2],-1.0);
{
std::vector<float> ret =n.computeOutput({1,1});
assert(ret[0] < 0.5);
}
std::vector<float> ret =n.computeOutput({0.7,0.7});
printVec(ret);
std::cout << n;
{
std::vector<float> ret =n.computeOutput({0,1});
assert(ret[0] > 0.5);
}
{
std::vector<float> ret =n.computeOutput({1,0});
assert(ret[0] > 0.5);
}
{
std::vector<float> ret =n.computeOutput({0,0});
assert(ret[0] < 0.5);
}
}
}