refactored propagation
This commit is contained in:
@@ -67,6 +67,15 @@ namespace FeedForward {
|
||||
return *neurons[neuron];
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This is a virtual function for selecting neuron
|
||||
* @param neuron is position in layer
|
||||
* @returns Specific neuron
|
||||
*/
|
||||
const NeuronInterface& operator[](const std::size_t& neuron) const {
|
||||
return *neurons[neuron];
|
||||
}
|
||||
|
||||
void solve(const std::vector<float> &input, std::vector<float> &output);
|
||||
|
||||
/**
|
||||
|
||||
@@ -1,10 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
#include "CorrectionFunction/Linear.h"
|
||||
#include "BatchPropagation.h"
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace Learning {
|
||||
@@ -12,23 +8,17 @@ namespace Learning {
|
||||
/** @class BackPropagation
|
||||
* @brief
|
||||
*/
|
||||
class BackPropagation {
|
||||
class BackPropagation : public BatchPropagation {
|
||||
|
||||
public:
|
||||
inline BackPropagation(FeedForward::Network &feedForwardNetwork, CorrectionFunction::CorrectionFunction *correction = new CorrectionFunction::Linear()):
|
||||
network(feedForwardNetwork), correctionFunction(correction),learningCoefficient(0.4), slopes() {
|
||||
BackPropagation(FeedForward::Network &feedForwardNetwork, std::shared_ptr<CorrectionFunction::CorrectionFunction> correction = std::make_shared<CorrectionFunction::Linear>()):
|
||||
BatchPropagation(feedForwardNetwork,correction), learningCoefficient(0.4) {
|
||||
resize();
|
||||
}
|
||||
|
||||
virtual ~BackPropagation() {
|
||||
delete correctionFunction;
|
||||
}
|
||||
|
||||
BackPropagation(const BackPropagation&)=delete;
|
||||
BackPropagation& operator=(const NeuralNetwork::Learning::BackPropagation&) = delete;
|
||||
|
||||
void teach(const std::vector<float> &input, const std::vector<float> &output);
|
||||
|
||||
inline virtual void setLearningCoefficient (const float& coefficient) { learningCoefficient=coefficient; }
|
||||
|
||||
float getMomentumWeight() const {
|
||||
@@ -48,75 +38,22 @@ namespace Learning {
|
||||
weightDecay=wd;
|
||||
}
|
||||
|
||||
std::size_t getBatchSize() const {
|
||||
return batchSize;
|
||||
}
|
||||
|
||||
void setBatchSize(std::size_t size) {
|
||||
batchSize = size;
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
virtual inline void resize() {
|
||||
if(slopes.size()!=network.size())
|
||||
slopes.resize(network.size());
|
||||
|
||||
for(std::size_t i=0; i < network.size(); i++) {
|
||||
if(slopes[i].size()!=network[i].size())
|
||||
slopes[i].resize(network[i].size());
|
||||
}
|
||||
|
||||
if(deltas.size() != network.size())
|
||||
deltas.resize(network.size());
|
||||
|
||||
bool resized = false;
|
||||
|
||||
for(std::size_t i = 0; i < network.size(); i++) {
|
||||
if(deltas[i].size() != network[i].size()) {
|
||||
deltas[i].resize(network[i].size());
|
||||
resized = true;
|
||||
|
||||
if(i > 0) {
|
||||
for(std::size_t j = 0; j < deltas[i].size(); j++) {
|
||||
deltas[i][j].resize(network[i - 1].size());
|
||||
std::fill(deltas[i][j].begin(),deltas[i][j].end(),0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(momentumWeight > 0.0 && (resized || lastDeltas.size() != deltas.size())) {
|
||||
lastDeltas = deltas;
|
||||
virtual inline void resize() override {
|
||||
BatchPropagation::resize();
|
||||
if(momentumWeight > 0.0) {
|
||||
_lastDeltas = _gradients;
|
||||
}
|
||||
}
|
||||
|
||||
virtual void computeDeltas(const std::vector<float> &input);
|
||||
|
||||
void updateWeights();
|
||||
|
||||
virtual void computeSlopes(const std::vector<float> &expectation);
|
||||
|
||||
virtual void endBatch() {
|
||||
|
||||
}
|
||||
|
||||
FeedForward::Network &network;
|
||||
|
||||
CorrectionFunction::CorrectionFunction *correctionFunction;
|
||||
virtual void updateWeightsAndEndBatch() override;
|
||||
|
||||
float learningCoefficient;
|
||||
|
||||
float momentumWeight = 0.0;
|
||||
|
||||
float weightDecay = 0.0;
|
||||
|
||||
std::size_t batchSize = 1;
|
||||
std::size_t currentBatchSize = 0;
|
||||
|
||||
std::vector<std::vector<float>> slopes;
|
||||
std::vector<std::vector<std::vector<float>>> deltas = {};
|
||||
std::vector<std::vector<std::vector<float>>> lastDeltas = {};
|
||||
std::vector<std::vector<std::vector<float>>> _lastDeltas = {};
|
||||
|
||||
};
|
||||
}
|
||||
|
||||
52
include/NeuralNetwork/Learning/BatchPropagation.h
Normal file
52
include/NeuralNetwork/Learning/BatchPropagation.h
Normal file
@@ -0,0 +1,52 @@
|
||||
#pragma once
|
||||
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
|
||||
#include "CorrectionFunction/Linear.h"
|
||||
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace Learning {
|
||||
class BatchPropagation {
|
||||
public:
|
||||
BatchPropagation(FeedForward::Network &ffn, std::shared_ptr<CorrectionFunction::CorrectionFunction> correction) : _network(ffn), _correctionFunction(correction) {
|
||||
|
||||
}
|
||||
|
||||
virtual ~BatchPropagation() {
|
||||
|
||||
}
|
||||
|
||||
void teach(const std::vector<float> &input, const std::vector<float> &output);
|
||||
|
||||
void finishTeaching();
|
||||
|
||||
std::size_t getBatchSize() const {
|
||||
return _batchSize;
|
||||
}
|
||||
|
||||
void setBatchSize(std::size_t size) {
|
||||
_batchSize = size;
|
||||
}
|
||||
protected:
|
||||
virtual void updateWeightsAndEndBatch() = 0;
|
||||
virtual void resize();
|
||||
|
||||
FeedForward::Network &_network;
|
||||
std::shared_ptr<CorrectionFunction::CorrectionFunction> _correctionFunction;
|
||||
|
||||
std::size_t _batchSize = 1;
|
||||
std::size_t _currentBatchSize = 0;
|
||||
|
||||
std::vector<std::vector<float>> _slopes = {};
|
||||
std::vector<std::vector<std::vector<float>>> _gradients = {};
|
||||
|
||||
bool init = false;
|
||||
private:
|
||||
void computeSlopes(const std::vector<float> &expectation);
|
||||
void computeDeltas(const std::vector<float> &input);
|
||||
};
|
||||
}
|
||||
}
|
||||
@@ -1,23 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "./BackPropagation.h"
|
||||
#include "./CorrectionFunction/Optical.h"
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace Learning {
|
||||
|
||||
/** @class OpticalBackPropagation
|
||||
* @brief
|
||||
*/
|
||||
class OpticalBackPropagation : public BackPropagation {
|
||||
|
||||
public:
|
||||
OpticalBackPropagation(FeedForward::Network &feedForwardNetwork): BackPropagation(feedForwardNetwork,new CorrectionFunction::Optical()) {
|
||||
|
||||
}
|
||||
|
||||
virtual ~OpticalBackPropagation() {
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
@@ -15,46 +15,24 @@ namespace NeuralNetwork {
|
||||
class QuickPropagation : public BackPropagation {
|
||||
|
||||
public:
|
||||
inline QuickPropagation(FeedForward::Network &feedForwardNetwork, CorrectionFunction::CorrectionFunction *correction = new CorrectionFunction::Linear()):
|
||||
BackPropagation(feedForwardNetwork,correction),previousSlopes() {
|
||||
resize();
|
||||
inline QuickPropagation(FeedForward::Network &feedForwardNetwork, std::shared_ptr<CorrectionFunction::CorrectionFunction> correction = std::make_shared<CorrectionFunction::Linear>()):
|
||||
BackPropagation(feedForwardNetwork,correction) {
|
||||
}
|
||||
|
||||
virtual ~QuickPropagation() {
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
float _maxChange=1.75;
|
||||
float _epsilon=0.5;
|
||||
|
||||
virtual inline void resize() override {
|
||||
if(slopes.size()!=network.size())
|
||||
slopes.resize(network.size());
|
||||
|
||||
for(std::size_t i=0; i < network.size(); i++) {
|
||||
if(slopes[i].size()!=network[i].size())
|
||||
slopes[i].resize(network[i].size());
|
||||
}
|
||||
|
||||
if(deltas.size()!=network.size())
|
||||
deltas.resize(network.size());
|
||||
|
||||
for(std::size_t i=0; i < network.size(); i++) {
|
||||
if(deltas[i].size()!=network[i].size())
|
||||
deltas[i].resize(network[i].size());
|
||||
|
||||
for(std::size_t j=0; j < previousSlopes[i].size(); j++) {
|
||||
deltas[i][j]=1.0;
|
||||
}
|
||||
}
|
||||
weightChange= deltas;
|
||||
BackPropagation::resize();
|
||||
_previousSlopes = _slopes;
|
||||
}
|
||||
|
||||
virtual void updateWeights(const std::vector<float> &input) override;
|
||||
|
||||
std::vector<std::vector<float>> previousSlopes ={};
|
||||
std::vector<std::vector<float>> deltas ={};
|
||||
std::vector<std::vector<float>> weightChange ={};
|
||||
std::vector<std::vector<float>> _previousSlopes ={};
|
||||
};
|
||||
}
|
||||
}
|
||||
@@ -1,10 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
#include "CorrectionFunction/Linear.h"
|
||||
#include "BatchPropagation.h"
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace Learning {
|
||||
@@ -12,122 +9,48 @@ namespace NeuralNetwork {
|
||||
/** @class Resilient Propagation
|
||||
* @brief
|
||||
*/
|
||||
class RProp {
|
||||
class RProp : public BatchPropagation {
|
||||
|
||||
public:
|
||||
RProp(FeedForward::Network &feedForwardNetwork, CorrectionFunction::CorrectionFunction *correction = new CorrectionFunction::Linear()):
|
||||
network(feedForwardNetwork), correctionFunction(correction) {
|
||||
resize();
|
||||
}
|
||||
|
||||
virtual ~RProp() {
|
||||
delete correctionFunction;
|
||||
RProp(FeedForward::Network &feedForwardNetwork, std::shared_ptr<CorrectionFunction::CorrectionFunction> correction = std::make_shared<CorrectionFunction::Linear>()):
|
||||
BatchPropagation(feedForwardNetwork, correction) {
|
||||
}
|
||||
|
||||
RProp(const RProp&)=delete;
|
||||
RProp& operator=(const NeuralNetwork::Learning::RProp&) = delete;
|
||||
|
||||
void teach(const std::vector<float> &input, const std::vector<float> &output);
|
||||
|
||||
std::size_t getBatchSize() const {
|
||||
return batchSize;
|
||||
void setInitialWeightChange(float initVal) {
|
||||
initialWeightChange=initVal;
|
||||
}
|
||||
void setLearningCoefficient(float) {
|
||||
|
||||
void setBatchSize(std::size_t size) {
|
||||
batchSize = size;
|
||||
}
|
||||
|
||||
void setInitialWeightChange(float init) {
|
||||
initialWeightChange=init;
|
||||
}
|
||||
protected:
|
||||
|
||||
virtual inline void resize() {
|
||||
if(slopes.size()!=network.size())
|
||||
slopes.resize(network.size());
|
||||
virtual inline void resize() override {
|
||||
BatchPropagation::resize();
|
||||
|
||||
for(std::size_t i=0; i < network.size(); i++) {
|
||||
if(slopes[i].size()!=network[i].size())
|
||||
slopes[i].resize(network[i].size());
|
||||
}
|
||||
_lastGradients =_gradients;
|
||||
|
||||
if(gradients.size() != network.size())
|
||||
gradients.resize(network.size());
|
||||
|
||||
bool resized = false;
|
||||
|
||||
for(std::size_t i = 0; i < network.size(); i++) {
|
||||
if(gradients[i].size() != network[i].size()) {
|
||||
gradients[i].resize(network[i].size());
|
||||
resized = true;
|
||||
|
||||
if(i > 0) {
|
||||
for(std::size_t j = 0; j < gradients[i].size(); j++) {
|
||||
gradients[i][j].resize(network[i - 1].size());
|
||||
std::fill(gradients[i][j].begin(),gradients[i][j].end(),0.0);
|
||||
}
|
||||
}
|
||||
_changesOfWeightChanges = _lastGradients;
|
||||
for(std::size_t i = 1; i < _network.size(); i++) {
|
||||
for(std::size_t j = 0; j < _changesOfWeightChanges[i].size(); j++) {
|
||||
std::fill(_changesOfWeightChanges[i][j].begin(),_changesOfWeightChanges[i][j].end(),initialWeightChange);
|
||||
}
|
||||
}
|
||||
|
||||
if(resized) {
|
||||
lastGradients = gradients;
|
||||
|
||||
if(changesOfWeightChanges.size() != network.size())
|
||||
changesOfWeightChanges.resize(network.size());
|
||||
|
||||
for(std::size_t i = 0; i < network.size(); i++) {
|
||||
if(changesOfWeightChanges[i].size() != network[i].size()) {
|
||||
changesOfWeightChanges[i].resize(network[i].size());
|
||||
if(i > 0) {
|
||||
for(std::size_t j = 0; j < changesOfWeightChanges[i].size(); j++) {
|
||||
changesOfWeightChanges[i][j].resize(network[i - 1].size());
|
||||
std::fill(changesOfWeightChanges[i][j].begin(),changesOfWeightChanges[i][j].end(),initialWeightChange);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(resized) {
|
||||
if(lastWeightChanges.size() != network.size())
|
||||
lastWeightChanges.resize(network.size());
|
||||
|
||||
for(std::size_t i = 0; i < network.size(); i++) {
|
||||
if(lastWeightChanges[i].size() != network[i].size()) {
|
||||
lastWeightChanges[i].resize(network[i].size());
|
||||
if(i > 0) {
|
||||
for(std::size_t j = 0; j < lastWeightChanges[i].size(); j++) {
|
||||
lastWeightChanges[i][j].resize(network[i - 1].size());
|
||||
std::fill(lastWeightChanges[i][j].begin(),lastWeightChanges[i][j].end(),0.1);
|
||||
}
|
||||
}
|
||||
}
|
||||
_lastWeightChanges = _lastGradients;
|
||||
for(std::size_t i = 1; i < _network.size(); i++) {
|
||||
for(std::size_t j = 0; j < _lastWeightChanges[i].size(); j++) {
|
||||
std::fill(_lastWeightChanges[i][j].begin(),_lastWeightChanges[i][j].end(),0.1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
virtual void computeSlopes(const std::vector<float> &expectation);
|
||||
virtual void computeDeltas(const std::vector<float> &input);
|
||||
void updateWeightsAndEndBatch() override;
|
||||
|
||||
void updateWeights();
|
||||
|
||||
virtual void endBatch() {
|
||||
|
||||
}
|
||||
|
||||
FeedForward::Network &network;
|
||||
|
||||
CorrectionFunction::CorrectionFunction *correctionFunction;
|
||||
|
||||
std::vector<std::vector<float>> slopes;
|
||||
std::vector<std::vector<std::vector<float>>> gradients = {};
|
||||
std::vector<std::vector<std::vector<float>>> lastGradients = {};
|
||||
std::vector<std::vector<std::vector<float>>> lastWeightChanges = {};
|
||||
std::vector<std::vector<std::vector<float>>> changesOfWeightChanges = {};
|
||||
|
||||
std::size_t batchSize = 1;
|
||||
std::size_t currentBatchSize = 0;
|
||||
std::vector<std::vector<std::vector<float>>> _lastGradients = {};
|
||||
std::vector<std::vector<std::vector<float>>> _lastWeightChanges = {};
|
||||
std::vector<std::vector<std::vector<float>>> _changesOfWeightChanges = {};
|
||||
|
||||
float maxChangeOfWeights = 50;
|
||||
float minChangeOfWeights = 0.0001;
|
||||
|
||||
@@ -108,7 +108,7 @@ namespace NeuralNetwork
|
||||
/**
|
||||
* @brief getter for activation function of neuron
|
||||
*/
|
||||
virtual ActivationFunction::ActivationFunction& getActivationFunction() =0;
|
||||
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const =0;
|
||||
|
||||
virtual void setBasisFunction(const BasisFunction::BasisFunction& basisFunction) =0;
|
||||
|
||||
@@ -167,7 +167,7 @@ namespace NeuralNetwork
|
||||
return *basis;
|
||||
}
|
||||
|
||||
virtual ActivationFunction::ActivationFunction& getActivationFunction() override {
|
||||
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const override {
|
||||
return *activation;
|
||||
}
|
||||
|
||||
@@ -216,7 +216,7 @@ namespace NeuralNetwork
|
||||
throw usageException("basis function");
|
||||
}
|
||||
|
||||
virtual ActivationFunction::ActivationFunction& getActivationFunction() override {
|
||||
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const override {
|
||||
throw usageException("biasNeuron - activation function");
|
||||
}
|
||||
|
||||
@@ -267,7 +267,7 @@ namespace NeuralNetwork
|
||||
throw usageException("basis function");
|
||||
}
|
||||
|
||||
virtual ActivationFunction::ActivationFunction& getActivationFunction() override {
|
||||
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const override {
|
||||
throw usageException("input neuron - activation function");
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user