refactored propagation

This commit is contained in:
2016-10-31 15:03:27 +01:00
parent 8749b3eb03
commit 77b38dec65
19 changed files with 285 additions and 548 deletions

View File

@@ -67,6 +67,15 @@ namespace FeedForward {
return *neurons[neuron];
}
/**
* @brief This is a virtual function for selecting neuron
* @param neuron is position in layer
* @returns Specific neuron
*/
const NeuronInterface& operator[](const std::size_t& neuron) const {
return *neurons[neuron];
}
void solve(const std::vector<float> &input, std::vector<float> &output);
/**

View File

@@ -1,10 +1,6 @@
#pragma once
#include <vector>
#include <cmath>
#include <NeuralNetwork/FeedForward/Network.h>
#include "CorrectionFunction/Linear.h"
#include "BatchPropagation.h"
namespace NeuralNetwork {
namespace Learning {
@@ -12,23 +8,17 @@ namespace Learning {
/** @class BackPropagation
* @brief
*/
class BackPropagation {
class BackPropagation : public BatchPropagation {
public:
inline BackPropagation(FeedForward::Network &feedForwardNetwork, CorrectionFunction::CorrectionFunction *correction = new CorrectionFunction::Linear()):
network(feedForwardNetwork), correctionFunction(correction),learningCoefficient(0.4), slopes() {
BackPropagation(FeedForward::Network &feedForwardNetwork, std::shared_ptr<CorrectionFunction::CorrectionFunction> correction = std::make_shared<CorrectionFunction::Linear>()):
BatchPropagation(feedForwardNetwork,correction), learningCoefficient(0.4) {
resize();
}
virtual ~BackPropagation() {
delete correctionFunction;
}
BackPropagation(const BackPropagation&)=delete;
BackPropagation& operator=(const NeuralNetwork::Learning::BackPropagation&) = delete;
void teach(const std::vector<float> &input, const std::vector<float> &output);
inline virtual void setLearningCoefficient (const float& coefficient) { learningCoefficient=coefficient; }
float getMomentumWeight() const {
@@ -48,75 +38,22 @@ namespace Learning {
weightDecay=wd;
}
std::size_t getBatchSize() const {
return batchSize;
}
void setBatchSize(std::size_t size) {
batchSize = size;
}
protected:
virtual inline void resize() {
if(slopes.size()!=network.size())
slopes.resize(network.size());
for(std::size_t i=0; i < network.size(); i++) {
if(slopes[i].size()!=network[i].size())
slopes[i].resize(network[i].size());
}
if(deltas.size() != network.size())
deltas.resize(network.size());
bool resized = false;
for(std::size_t i = 0; i < network.size(); i++) {
if(deltas[i].size() != network[i].size()) {
deltas[i].resize(network[i].size());
resized = true;
if(i > 0) {
for(std::size_t j = 0; j < deltas[i].size(); j++) {
deltas[i][j].resize(network[i - 1].size());
std::fill(deltas[i][j].begin(),deltas[i][j].end(),0.0);
}
}
}
}
if(momentumWeight > 0.0 && (resized || lastDeltas.size() != deltas.size())) {
lastDeltas = deltas;
virtual inline void resize() override {
BatchPropagation::resize();
if(momentumWeight > 0.0) {
_lastDeltas = _gradients;
}
}
virtual void computeDeltas(const std::vector<float> &input);
void updateWeights();
virtual void computeSlopes(const std::vector<float> &expectation);
virtual void endBatch() {
}
FeedForward::Network &network;
CorrectionFunction::CorrectionFunction *correctionFunction;
virtual void updateWeightsAndEndBatch() override;
float learningCoefficient;
float momentumWeight = 0.0;
float weightDecay = 0.0;
std::size_t batchSize = 1;
std::size_t currentBatchSize = 0;
std::vector<std::vector<float>> slopes;
std::vector<std::vector<std::vector<float>>> deltas = {};
std::vector<std::vector<std::vector<float>>> lastDeltas = {};
std::vector<std::vector<std::vector<float>>> _lastDeltas = {};
};
}

View File

@@ -0,0 +1,52 @@
#pragma once
#include <NeuralNetwork/FeedForward/Network.h>
#include "CorrectionFunction/Linear.h"
#include <vector>
#include <memory>
namespace NeuralNetwork {
namespace Learning {
class BatchPropagation {
public:
BatchPropagation(FeedForward::Network &ffn, std::shared_ptr<CorrectionFunction::CorrectionFunction> correction) : _network(ffn), _correctionFunction(correction) {
}
virtual ~BatchPropagation() {
}
void teach(const std::vector<float> &input, const std::vector<float> &output);
void finishTeaching();
std::size_t getBatchSize() const {
return _batchSize;
}
void setBatchSize(std::size_t size) {
_batchSize = size;
}
protected:
virtual void updateWeightsAndEndBatch() = 0;
virtual void resize();
FeedForward::Network &_network;
std::shared_ptr<CorrectionFunction::CorrectionFunction> _correctionFunction;
std::size_t _batchSize = 1;
std::size_t _currentBatchSize = 0;
std::vector<std::vector<float>> _slopes = {};
std::vector<std::vector<std::vector<float>>> _gradients = {};
bool init = false;
private:
void computeSlopes(const std::vector<float> &expectation);
void computeDeltas(const std::vector<float> &input);
};
}
}

View File

@@ -1,23 +0,0 @@
#pragma once
#include "./BackPropagation.h"
#include "./CorrectionFunction/Optical.h"
namespace NeuralNetwork {
namespace Learning {
/** @class OpticalBackPropagation
* @brief
*/
class OpticalBackPropagation : public BackPropagation {
public:
OpticalBackPropagation(FeedForward::Network &feedForwardNetwork): BackPropagation(feedForwardNetwork,new CorrectionFunction::Optical()) {
}
virtual ~OpticalBackPropagation() {
}
};
}
}

View File

@@ -15,46 +15,24 @@ namespace NeuralNetwork {
class QuickPropagation : public BackPropagation {
public:
inline QuickPropagation(FeedForward::Network &feedForwardNetwork, CorrectionFunction::CorrectionFunction *correction = new CorrectionFunction::Linear()):
BackPropagation(feedForwardNetwork,correction),previousSlopes() {
resize();
inline QuickPropagation(FeedForward::Network &feedForwardNetwork, std::shared_ptr<CorrectionFunction::CorrectionFunction> correction = std::make_shared<CorrectionFunction::Linear>()):
BackPropagation(feedForwardNetwork,correction) {
}
virtual ~QuickPropagation() {
}
protected:
float _maxChange=1.75;
float _epsilon=0.5;
virtual inline void resize() override {
if(slopes.size()!=network.size())
slopes.resize(network.size());
for(std::size_t i=0; i < network.size(); i++) {
if(slopes[i].size()!=network[i].size())
slopes[i].resize(network[i].size());
}
if(deltas.size()!=network.size())
deltas.resize(network.size());
for(std::size_t i=0; i < network.size(); i++) {
if(deltas[i].size()!=network[i].size())
deltas[i].resize(network[i].size());
for(std::size_t j=0; j < previousSlopes[i].size(); j++) {
deltas[i][j]=1.0;
}
}
weightChange= deltas;
BackPropagation::resize();
_previousSlopes = _slopes;
}
virtual void updateWeights(const std::vector<float> &input) override;
std::vector<std::vector<float>> previousSlopes ={};
std::vector<std::vector<float>> deltas ={};
std::vector<std::vector<float>> weightChange ={};
std::vector<std::vector<float>> _previousSlopes ={};
};
}
}

View File

@@ -1,10 +1,7 @@
#pragma once
#include <vector>
#include <cmath>
#include <NeuralNetwork/FeedForward/Network.h>
#include "CorrectionFunction/Linear.h"
#include "BatchPropagation.h"
namespace NeuralNetwork {
namespace Learning {
@@ -12,122 +9,48 @@ namespace NeuralNetwork {
/** @class Resilient Propagation
* @brief
*/
class RProp {
class RProp : public BatchPropagation {
public:
RProp(FeedForward::Network &feedForwardNetwork, CorrectionFunction::CorrectionFunction *correction = new CorrectionFunction::Linear()):
network(feedForwardNetwork), correctionFunction(correction) {
resize();
}
virtual ~RProp() {
delete correctionFunction;
RProp(FeedForward::Network &feedForwardNetwork, std::shared_ptr<CorrectionFunction::CorrectionFunction> correction = std::make_shared<CorrectionFunction::Linear>()):
BatchPropagation(feedForwardNetwork, correction) {
}
RProp(const RProp&)=delete;
RProp& operator=(const NeuralNetwork::Learning::RProp&) = delete;
void teach(const std::vector<float> &input, const std::vector<float> &output);
std::size_t getBatchSize() const {
return batchSize;
void setInitialWeightChange(float initVal) {
initialWeightChange=initVal;
}
void setLearningCoefficient(float) {
void setBatchSize(std::size_t size) {
batchSize = size;
}
void setInitialWeightChange(float init) {
initialWeightChange=init;
}
protected:
virtual inline void resize() {
if(slopes.size()!=network.size())
slopes.resize(network.size());
virtual inline void resize() override {
BatchPropagation::resize();
for(std::size_t i=0; i < network.size(); i++) {
if(slopes[i].size()!=network[i].size())
slopes[i].resize(network[i].size());
}
_lastGradients =_gradients;
if(gradients.size() != network.size())
gradients.resize(network.size());
bool resized = false;
for(std::size_t i = 0; i < network.size(); i++) {
if(gradients[i].size() != network[i].size()) {
gradients[i].resize(network[i].size());
resized = true;
if(i > 0) {
for(std::size_t j = 0; j < gradients[i].size(); j++) {
gradients[i][j].resize(network[i - 1].size());
std::fill(gradients[i][j].begin(),gradients[i][j].end(),0.0);
}
}
_changesOfWeightChanges = _lastGradients;
for(std::size_t i = 1; i < _network.size(); i++) {
for(std::size_t j = 0; j < _changesOfWeightChanges[i].size(); j++) {
std::fill(_changesOfWeightChanges[i][j].begin(),_changesOfWeightChanges[i][j].end(),initialWeightChange);
}
}
if(resized) {
lastGradients = gradients;
if(changesOfWeightChanges.size() != network.size())
changesOfWeightChanges.resize(network.size());
for(std::size_t i = 0; i < network.size(); i++) {
if(changesOfWeightChanges[i].size() != network[i].size()) {
changesOfWeightChanges[i].resize(network[i].size());
if(i > 0) {
for(std::size_t j = 0; j < changesOfWeightChanges[i].size(); j++) {
changesOfWeightChanges[i][j].resize(network[i - 1].size());
std::fill(changesOfWeightChanges[i][j].begin(),changesOfWeightChanges[i][j].end(),initialWeightChange);
}
}
}
}
}
if(resized) {
if(lastWeightChanges.size() != network.size())
lastWeightChanges.resize(network.size());
for(std::size_t i = 0; i < network.size(); i++) {
if(lastWeightChanges[i].size() != network[i].size()) {
lastWeightChanges[i].resize(network[i].size());
if(i > 0) {
for(std::size_t j = 0; j < lastWeightChanges[i].size(); j++) {
lastWeightChanges[i][j].resize(network[i - 1].size());
std::fill(lastWeightChanges[i][j].begin(),lastWeightChanges[i][j].end(),0.1);
}
}
}
_lastWeightChanges = _lastGradients;
for(std::size_t i = 1; i < _network.size(); i++) {
for(std::size_t j = 0; j < _lastWeightChanges[i].size(); j++) {
std::fill(_lastWeightChanges[i][j].begin(),_lastWeightChanges[i][j].end(),0.1);
}
}
}
virtual void computeSlopes(const std::vector<float> &expectation);
virtual void computeDeltas(const std::vector<float> &input);
void updateWeightsAndEndBatch() override;
void updateWeights();
virtual void endBatch() {
}
FeedForward::Network &network;
CorrectionFunction::CorrectionFunction *correctionFunction;
std::vector<std::vector<float>> slopes;
std::vector<std::vector<std::vector<float>>> gradients = {};
std::vector<std::vector<std::vector<float>>> lastGradients = {};
std::vector<std::vector<std::vector<float>>> lastWeightChanges = {};
std::vector<std::vector<std::vector<float>>> changesOfWeightChanges = {};
std::size_t batchSize = 1;
std::size_t currentBatchSize = 0;
std::vector<std::vector<std::vector<float>>> _lastGradients = {};
std::vector<std::vector<std::vector<float>>> _lastWeightChanges = {};
std::vector<std::vector<std::vector<float>>> _changesOfWeightChanges = {};
float maxChangeOfWeights = 50;
float minChangeOfWeights = 0.0001;

View File

@@ -108,7 +108,7 @@ namespace NeuralNetwork
/**
* @brief getter for activation function of neuron
*/
virtual ActivationFunction::ActivationFunction& getActivationFunction() =0;
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const =0;
virtual void setBasisFunction(const BasisFunction::BasisFunction& basisFunction) =0;
@@ -167,7 +167,7 @@ namespace NeuralNetwork
return *basis;
}
virtual ActivationFunction::ActivationFunction& getActivationFunction() override {
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const override {
return *activation;
}
@@ -216,7 +216,7 @@ namespace NeuralNetwork
throw usageException("basis function");
}
virtual ActivationFunction::ActivationFunction& getActivationFunction() override {
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const override {
throw usageException("biasNeuron - activation function");
}
@@ -267,7 +267,7 @@ namespace NeuralNetwork
throw usageException("basis function");
}
virtual ActivationFunction::ActivationFunction& getActivationFunction() override {
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const override {
throw usageException("input neuron - activation function");
}