refactored propagation
This commit is contained in:
@@ -61,8 +61,9 @@ endif(USE_SSE)
|
|||||||
set (LIBRARY_SOURCES
|
set (LIBRARY_SOURCES
|
||||||
src/sse_mathfun.cpp
|
src/sse_mathfun.cpp
|
||||||
|
|
||||||
|
src/NeuralNetwork/Learning/BatchPropagation.cpp
|
||||||
src/NeuralNetwork/Learning/BackPropagation.cpp
|
src/NeuralNetwork/Learning/BackPropagation.cpp
|
||||||
src/NeuralNetwork/Learning/QuickPropagation.cpp
|
#src/NeuralNetwork/Learning/QuickPropagation.cpp
|
||||||
src/NeuralNetwork/Learning/PerceptronLearning.cpp
|
src/NeuralNetwork/Learning/PerceptronLearning.cpp
|
||||||
src/NeuralNetwork/Learning/RProp.cpp
|
src/NeuralNetwork/Learning/RProp.cpp
|
||||||
|
|
||||||
|
|||||||
@@ -67,6 +67,15 @@ namespace FeedForward {
|
|||||||
return *neurons[neuron];
|
return *neurons[neuron];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief This is a virtual function for selecting neuron
|
||||||
|
* @param neuron is position in layer
|
||||||
|
* @returns Specific neuron
|
||||||
|
*/
|
||||||
|
const NeuronInterface& operator[](const std::size_t& neuron) const {
|
||||||
|
return *neurons[neuron];
|
||||||
|
}
|
||||||
|
|
||||||
void solve(const std::vector<float> &input, std::vector<float> &output);
|
void solve(const std::vector<float> &input, std::vector<float> &output);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
|||||||
@@ -1,10 +1,6 @@
|
|||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include <vector>
|
#include "BatchPropagation.h"
|
||||||
#include <cmath>
|
|
||||||
|
|
||||||
#include <NeuralNetwork/FeedForward/Network.h>
|
|
||||||
#include "CorrectionFunction/Linear.h"
|
|
||||||
|
|
||||||
namespace NeuralNetwork {
|
namespace NeuralNetwork {
|
||||||
namespace Learning {
|
namespace Learning {
|
||||||
@@ -12,23 +8,17 @@ namespace Learning {
|
|||||||
/** @class BackPropagation
|
/** @class BackPropagation
|
||||||
* @brief
|
* @brief
|
||||||
*/
|
*/
|
||||||
class BackPropagation {
|
class BackPropagation : public BatchPropagation {
|
||||||
|
|
||||||
public:
|
public:
|
||||||
inline BackPropagation(FeedForward::Network &feedForwardNetwork, CorrectionFunction::CorrectionFunction *correction = new CorrectionFunction::Linear()):
|
BackPropagation(FeedForward::Network &feedForwardNetwork, std::shared_ptr<CorrectionFunction::CorrectionFunction> correction = std::make_shared<CorrectionFunction::Linear>()):
|
||||||
network(feedForwardNetwork), correctionFunction(correction),learningCoefficient(0.4), slopes() {
|
BatchPropagation(feedForwardNetwork,correction), learningCoefficient(0.4) {
|
||||||
resize();
|
resize();
|
||||||
}
|
}
|
||||||
|
|
||||||
virtual ~BackPropagation() {
|
|
||||||
delete correctionFunction;
|
|
||||||
}
|
|
||||||
|
|
||||||
BackPropagation(const BackPropagation&)=delete;
|
BackPropagation(const BackPropagation&)=delete;
|
||||||
BackPropagation& operator=(const NeuralNetwork::Learning::BackPropagation&) = delete;
|
BackPropagation& operator=(const NeuralNetwork::Learning::BackPropagation&) = delete;
|
||||||
|
|
||||||
void teach(const std::vector<float> &input, const std::vector<float> &output);
|
|
||||||
|
|
||||||
inline virtual void setLearningCoefficient (const float& coefficient) { learningCoefficient=coefficient; }
|
inline virtual void setLearningCoefficient (const float& coefficient) { learningCoefficient=coefficient; }
|
||||||
|
|
||||||
float getMomentumWeight() const {
|
float getMomentumWeight() const {
|
||||||
@@ -48,75 +38,22 @@ namespace Learning {
|
|||||||
weightDecay=wd;
|
weightDecay=wd;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::size_t getBatchSize() const {
|
|
||||||
return batchSize;
|
|
||||||
}
|
|
||||||
|
|
||||||
void setBatchSize(std::size_t size) {
|
|
||||||
batchSize = size;
|
|
||||||
}
|
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
|
|
||||||
virtual inline void resize() {
|
virtual inline void resize() override {
|
||||||
if(slopes.size()!=network.size())
|
BatchPropagation::resize();
|
||||||
slopes.resize(network.size());
|
if(momentumWeight > 0.0) {
|
||||||
|
_lastDeltas = _gradients;
|
||||||
for(std::size_t i=0; i < network.size(); i++) {
|
|
||||||
if(slopes[i].size()!=network[i].size())
|
|
||||||
slopes[i].resize(network[i].size());
|
|
||||||
}
|
|
||||||
|
|
||||||
if(deltas.size() != network.size())
|
|
||||||
deltas.resize(network.size());
|
|
||||||
|
|
||||||
bool resized = false;
|
|
||||||
|
|
||||||
for(std::size_t i = 0; i < network.size(); i++) {
|
|
||||||
if(deltas[i].size() != network[i].size()) {
|
|
||||||
deltas[i].resize(network[i].size());
|
|
||||||
resized = true;
|
|
||||||
|
|
||||||
if(i > 0) {
|
|
||||||
for(std::size_t j = 0; j < deltas[i].size(); j++) {
|
|
||||||
deltas[i][j].resize(network[i - 1].size());
|
|
||||||
std::fill(deltas[i][j].begin(),deltas[i][j].end(),0.0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if(momentumWeight > 0.0 && (resized || lastDeltas.size() != deltas.size())) {
|
virtual void updateWeightsAndEndBatch() override;
|
||||||
lastDeltas = deltas;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void computeDeltas(const std::vector<float> &input);
|
|
||||||
|
|
||||||
void updateWeights();
|
|
||||||
|
|
||||||
virtual void computeSlopes(const std::vector<float> &expectation);
|
|
||||||
|
|
||||||
virtual void endBatch() {
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
FeedForward::Network &network;
|
|
||||||
|
|
||||||
CorrectionFunction::CorrectionFunction *correctionFunction;
|
|
||||||
|
|
||||||
float learningCoefficient;
|
float learningCoefficient;
|
||||||
|
|
||||||
float momentumWeight = 0.0;
|
float momentumWeight = 0.0;
|
||||||
|
|
||||||
float weightDecay = 0.0;
|
float weightDecay = 0.0;
|
||||||
|
|
||||||
std::size_t batchSize = 1;
|
std::vector<std::vector<std::vector<float>>> _lastDeltas = {};
|
||||||
std::size_t currentBatchSize = 0;
|
|
||||||
|
|
||||||
std::vector<std::vector<float>> slopes;
|
|
||||||
std::vector<std::vector<std::vector<float>>> deltas = {};
|
|
||||||
std::vector<std::vector<std::vector<float>>> lastDeltas = {};
|
|
||||||
|
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|||||||
52
include/NeuralNetwork/Learning/BatchPropagation.h
Normal file
52
include/NeuralNetwork/Learning/BatchPropagation.h
Normal file
@@ -0,0 +1,52 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <NeuralNetwork/FeedForward/Network.h>
|
||||||
|
|
||||||
|
#include "CorrectionFunction/Linear.h"
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
#include <memory>
|
||||||
|
|
||||||
|
namespace NeuralNetwork {
|
||||||
|
namespace Learning {
|
||||||
|
class BatchPropagation {
|
||||||
|
public:
|
||||||
|
BatchPropagation(FeedForward::Network &ffn, std::shared_ptr<CorrectionFunction::CorrectionFunction> correction) : _network(ffn), _correctionFunction(correction) {
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual ~BatchPropagation() {
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void teach(const std::vector<float> &input, const std::vector<float> &output);
|
||||||
|
|
||||||
|
void finishTeaching();
|
||||||
|
|
||||||
|
std::size_t getBatchSize() const {
|
||||||
|
return _batchSize;
|
||||||
|
}
|
||||||
|
|
||||||
|
void setBatchSize(std::size_t size) {
|
||||||
|
_batchSize = size;
|
||||||
|
}
|
||||||
|
protected:
|
||||||
|
virtual void updateWeightsAndEndBatch() = 0;
|
||||||
|
virtual void resize();
|
||||||
|
|
||||||
|
FeedForward::Network &_network;
|
||||||
|
std::shared_ptr<CorrectionFunction::CorrectionFunction> _correctionFunction;
|
||||||
|
|
||||||
|
std::size_t _batchSize = 1;
|
||||||
|
std::size_t _currentBatchSize = 0;
|
||||||
|
|
||||||
|
std::vector<std::vector<float>> _slopes = {};
|
||||||
|
std::vector<std::vector<std::vector<float>>> _gradients = {};
|
||||||
|
|
||||||
|
bool init = false;
|
||||||
|
private:
|
||||||
|
void computeSlopes(const std::vector<float> &expectation);
|
||||||
|
void computeDeltas(const std::vector<float> &input);
|
||||||
|
};
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -1,23 +0,0 @@
|
|||||||
#pragma once
|
|
||||||
|
|
||||||
#include "./BackPropagation.h"
|
|
||||||
#include "./CorrectionFunction/Optical.h"
|
|
||||||
|
|
||||||
namespace NeuralNetwork {
|
|
||||||
namespace Learning {
|
|
||||||
|
|
||||||
/** @class OpticalBackPropagation
|
|
||||||
* @brief
|
|
||||||
*/
|
|
||||||
class OpticalBackPropagation : public BackPropagation {
|
|
||||||
|
|
||||||
public:
|
|
||||||
OpticalBackPropagation(FeedForward::Network &feedForwardNetwork): BackPropagation(feedForwardNetwork,new CorrectionFunction::Optical()) {
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual ~OpticalBackPropagation() {
|
|
||||||
}
|
|
||||||
};
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@@ -15,46 +15,24 @@ namespace NeuralNetwork {
|
|||||||
class QuickPropagation : public BackPropagation {
|
class QuickPropagation : public BackPropagation {
|
||||||
|
|
||||||
public:
|
public:
|
||||||
inline QuickPropagation(FeedForward::Network &feedForwardNetwork, CorrectionFunction::CorrectionFunction *correction = new CorrectionFunction::Linear()):
|
inline QuickPropagation(FeedForward::Network &feedForwardNetwork, std::shared_ptr<CorrectionFunction::CorrectionFunction> correction = std::make_shared<CorrectionFunction::Linear>()):
|
||||||
BackPropagation(feedForwardNetwork,correction),previousSlopes() {
|
BackPropagation(feedForwardNetwork,correction) {
|
||||||
resize();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
virtual ~QuickPropagation() {
|
virtual ~QuickPropagation() {
|
||||||
}
|
}
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
|
|
||||||
float _maxChange=1.75;
|
float _maxChange=1.75;
|
||||||
float _epsilon=0.5;
|
float _epsilon=0.5;
|
||||||
|
|
||||||
virtual inline void resize() override {
|
virtual inline void resize() override {
|
||||||
if(slopes.size()!=network.size())
|
BackPropagation::resize();
|
||||||
slopes.resize(network.size());
|
_previousSlopes = _slopes;
|
||||||
|
|
||||||
for(std::size_t i=0; i < network.size(); i++) {
|
|
||||||
if(slopes[i].size()!=network[i].size())
|
|
||||||
slopes[i].resize(network[i].size());
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if(deltas.size()!=network.size())
|
std::vector<std::vector<float>> _previousSlopes ={};
|
||||||
deltas.resize(network.size());
|
|
||||||
|
|
||||||
for(std::size_t i=0; i < network.size(); i++) {
|
|
||||||
if(deltas[i].size()!=network[i].size())
|
|
||||||
deltas[i].resize(network[i].size());
|
|
||||||
|
|
||||||
for(std::size_t j=0; j < previousSlopes[i].size(); j++) {
|
|
||||||
deltas[i][j]=1.0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
weightChange= deltas;
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void updateWeights(const std::vector<float> &input) override;
|
|
||||||
|
|
||||||
std::vector<std::vector<float>> previousSlopes ={};
|
|
||||||
std::vector<std::vector<float>> deltas ={};
|
|
||||||
std::vector<std::vector<float>> weightChange ={};
|
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -1,10 +1,7 @@
|
|||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include <vector>
|
|
||||||
#include <cmath>
|
|
||||||
|
|
||||||
#include <NeuralNetwork/FeedForward/Network.h>
|
#include "BatchPropagation.h"
|
||||||
#include "CorrectionFunction/Linear.h"
|
|
||||||
|
|
||||||
namespace NeuralNetwork {
|
namespace NeuralNetwork {
|
||||||
namespace Learning {
|
namespace Learning {
|
||||||
@@ -12,122 +9,48 @@ namespace NeuralNetwork {
|
|||||||
/** @class Resilient Propagation
|
/** @class Resilient Propagation
|
||||||
* @brief
|
* @brief
|
||||||
*/
|
*/
|
||||||
class RProp {
|
class RProp : public BatchPropagation {
|
||||||
|
|
||||||
public:
|
public:
|
||||||
RProp(FeedForward::Network &feedForwardNetwork, CorrectionFunction::CorrectionFunction *correction = new CorrectionFunction::Linear()):
|
RProp(FeedForward::Network &feedForwardNetwork, std::shared_ptr<CorrectionFunction::CorrectionFunction> correction = std::make_shared<CorrectionFunction::Linear>()):
|
||||||
network(feedForwardNetwork), correctionFunction(correction) {
|
BatchPropagation(feedForwardNetwork, correction) {
|
||||||
resize();
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual ~RProp() {
|
|
||||||
delete correctionFunction;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
RProp(const RProp&)=delete;
|
RProp(const RProp&)=delete;
|
||||||
RProp& operator=(const NeuralNetwork::Learning::RProp&) = delete;
|
RProp& operator=(const NeuralNetwork::Learning::RProp&) = delete;
|
||||||
|
|
||||||
void teach(const std::vector<float> &input, const std::vector<float> &output);
|
void setInitialWeightChange(float initVal) {
|
||||||
|
initialWeightChange=initVal;
|
||||||
std::size_t getBatchSize() const {
|
|
||||||
return batchSize;
|
|
||||||
}
|
}
|
||||||
|
void setLearningCoefficient(float) {
|
||||||
|
|
||||||
void setBatchSize(std::size_t size) {
|
|
||||||
batchSize = size;
|
|
||||||
}
|
|
||||||
|
|
||||||
void setInitialWeightChange(float init) {
|
|
||||||
initialWeightChange=init;
|
|
||||||
}
|
}
|
||||||
protected:
|
protected:
|
||||||
|
|
||||||
virtual inline void resize() {
|
virtual inline void resize() override {
|
||||||
if(slopes.size()!=network.size())
|
BatchPropagation::resize();
|
||||||
slopes.resize(network.size());
|
|
||||||
|
|
||||||
for(std::size_t i=0; i < network.size(); i++) {
|
_lastGradients =_gradients;
|
||||||
if(slopes[i].size()!=network[i].size())
|
|
||||||
slopes[i].resize(network[i].size());
|
|
||||||
}
|
|
||||||
|
|
||||||
if(gradients.size() != network.size())
|
_changesOfWeightChanges = _lastGradients;
|
||||||
gradients.resize(network.size());
|
for(std::size_t i = 1; i < _network.size(); i++) {
|
||||||
|
for(std::size_t j = 0; j < _changesOfWeightChanges[i].size(); j++) {
|
||||||
bool resized = false;
|
std::fill(_changesOfWeightChanges[i][j].begin(),_changesOfWeightChanges[i][j].end(),initialWeightChange);
|
||||||
|
|
||||||
for(std::size_t i = 0; i < network.size(); i++) {
|
|
||||||
if(gradients[i].size() != network[i].size()) {
|
|
||||||
gradients[i].resize(network[i].size());
|
|
||||||
resized = true;
|
|
||||||
|
|
||||||
if(i > 0) {
|
|
||||||
for(std::size_t j = 0; j < gradients[i].size(); j++) {
|
|
||||||
gradients[i][j].resize(network[i - 1].size());
|
|
||||||
std::fill(gradients[i][j].begin(),gradients[i][j].end(),0.0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if(resized) {
|
|
||||||
lastGradients = gradients;
|
|
||||||
|
|
||||||
if(changesOfWeightChanges.size() != network.size())
|
|
||||||
changesOfWeightChanges.resize(network.size());
|
|
||||||
|
|
||||||
for(std::size_t i = 0; i < network.size(); i++) {
|
|
||||||
if(changesOfWeightChanges[i].size() != network[i].size()) {
|
|
||||||
changesOfWeightChanges[i].resize(network[i].size());
|
|
||||||
if(i > 0) {
|
|
||||||
for(std::size_t j = 0; j < changesOfWeightChanges[i].size(); j++) {
|
|
||||||
changesOfWeightChanges[i][j].resize(network[i - 1].size());
|
|
||||||
std::fill(changesOfWeightChanges[i][j].begin(),changesOfWeightChanges[i][j].end(),initialWeightChange);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if(resized) {
|
|
||||||
if(lastWeightChanges.size() != network.size())
|
|
||||||
lastWeightChanges.resize(network.size());
|
|
||||||
|
|
||||||
for(std::size_t i = 0; i < network.size(); i++) {
|
|
||||||
if(lastWeightChanges[i].size() != network[i].size()) {
|
|
||||||
lastWeightChanges[i].resize(network[i].size());
|
|
||||||
if(i > 0) {
|
|
||||||
for(std::size_t j = 0; j < lastWeightChanges[i].size(); j++) {
|
|
||||||
lastWeightChanges[i][j].resize(network[i - 1].size());
|
|
||||||
std::fill(lastWeightChanges[i][j].begin(),lastWeightChanges[i][j].end(),0.1);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
_lastWeightChanges = _lastGradients;
|
||||||
|
for(std::size_t i = 1; i < _network.size(); i++) {
|
||||||
|
for(std::size_t j = 0; j < _lastWeightChanges[i].size(); j++) {
|
||||||
|
std::fill(_lastWeightChanges[i][j].begin(),_lastWeightChanges[i][j].end(),0.1);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
virtual void computeSlopes(const std::vector<float> &expectation);
|
void updateWeightsAndEndBatch() override;
|
||||||
virtual void computeDeltas(const std::vector<float> &input);
|
|
||||||
|
|
||||||
void updateWeights();
|
std::vector<std::vector<std::vector<float>>> _lastGradients = {};
|
||||||
|
std::vector<std::vector<std::vector<float>>> _lastWeightChanges = {};
|
||||||
virtual void endBatch() {
|
std::vector<std::vector<std::vector<float>>> _changesOfWeightChanges = {};
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
FeedForward::Network &network;
|
|
||||||
|
|
||||||
CorrectionFunction::CorrectionFunction *correctionFunction;
|
|
||||||
|
|
||||||
std::vector<std::vector<float>> slopes;
|
|
||||||
std::vector<std::vector<std::vector<float>>> gradients = {};
|
|
||||||
std::vector<std::vector<std::vector<float>>> lastGradients = {};
|
|
||||||
std::vector<std::vector<std::vector<float>>> lastWeightChanges = {};
|
|
||||||
std::vector<std::vector<std::vector<float>>> changesOfWeightChanges = {};
|
|
||||||
|
|
||||||
std::size_t batchSize = 1;
|
|
||||||
std::size_t currentBatchSize = 0;
|
|
||||||
|
|
||||||
float maxChangeOfWeights = 50;
|
float maxChangeOfWeights = 50;
|
||||||
float minChangeOfWeights = 0.0001;
|
float minChangeOfWeights = 0.0001;
|
||||||
|
|||||||
@@ -108,7 +108,7 @@ namespace NeuralNetwork
|
|||||||
/**
|
/**
|
||||||
* @brief getter for activation function of neuron
|
* @brief getter for activation function of neuron
|
||||||
*/
|
*/
|
||||||
virtual ActivationFunction::ActivationFunction& getActivationFunction() =0;
|
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const =0;
|
||||||
|
|
||||||
virtual void setBasisFunction(const BasisFunction::BasisFunction& basisFunction) =0;
|
virtual void setBasisFunction(const BasisFunction::BasisFunction& basisFunction) =0;
|
||||||
|
|
||||||
@@ -167,7 +167,7 @@ namespace NeuralNetwork
|
|||||||
return *basis;
|
return *basis;
|
||||||
}
|
}
|
||||||
|
|
||||||
virtual ActivationFunction::ActivationFunction& getActivationFunction() override {
|
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const override {
|
||||||
return *activation;
|
return *activation;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -216,7 +216,7 @@ namespace NeuralNetwork
|
|||||||
throw usageException("basis function");
|
throw usageException("basis function");
|
||||||
}
|
}
|
||||||
|
|
||||||
virtual ActivationFunction::ActivationFunction& getActivationFunction() override {
|
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const override {
|
||||||
throw usageException("biasNeuron - activation function");
|
throw usageException("biasNeuron - activation function");
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -267,7 +267,7 @@ namespace NeuralNetwork
|
|||||||
throw usageException("basis function");
|
throw usageException("basis function");
|
||||||
}
|
}
|
||||||
|
|
||||||
virtual ActivationFunction::ActivationFunction& getActivationFunction() override {
|
virtual const ActivationFunction::ActivationFunction& getActivationFunction() const override {
|
||||||
throw usageException("input neuron - activation function");
|
throw usageException("input neuron - activation function");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -1,89 +1,23 @@
|
|||||||
#include <NeuralNetwork/Learning/BackPropagation.h>
|
#include <NeuralNetwork/Learning/BackPropagation.h>
|
||||||
|
|
||||||
#include <cassert>
|
void NeuralNetwork::Learning::BackPropagation::updateWeightsAndEndBatch() {
|
||||||
#include <immintrin.h>
|
|
||||||
|
|
||||||
void NeuralNetwork::Learning::BackPropagation::teach(const std::vector<float> &input, const std::vector<float> &expectation) {
|
|
||||||
network.computeOutput(input);
|
|
||||||
resize();
|
|
||||||
computeSlopes(expectation);
|
|
||||||
|
|
||||||
computeDeltas(input);
|
|
||||||
if(++currentBatchSize >= batchSize) {
|
|
||||||
updateWeights();
|
|
||||||
endBatch();
|
|
||||||
currentBatchSize=0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void NeuralNetwork::Learning::BackPropagation::computeSlopes(const std::vector<float> &expectation) {
|
|
||||||
auto& outputLayer=network[network.size()-1];
|
|
||||||
for(std::size_t j=1;j<outputLayer.size();j++) {
|
|
||||||
auto& neuron = outputLayer[j];
|
|
||||||
slopes[network.size()-1][j]=correctionFunction->operator()( expectation[j-1], neuron.output())*
|
|
||||||
neuron.getActivationFunction().derivatedOutput(neuron.value(),neuron.output());
|
|
||||||
}
|
|
||||||
|
|
||||||
for(int layerIndex=static_cast<int>(network.size()-2);layerIndex>0;layerIndex--) {
|
|
||||||
auto &layer=network[layerIndex];
|
|
||||||
|
|
||||||
for(std::size_t j=1;j<layer.size();j++) {
|
|
||||||
float deltasWeight = 0;
|
|
||||||
|
|
||||||
for(std::size_t k=1;k<network[layerIndex+1].size();k++) {
|
|
||||||
deltasWeight+=slopes[layerIndex+1][k]* network[layerIndex+1][k].weight(j);
|
|
||||||
}
|
|
||||||
|
|
||||||
slopes[layerIndex][j]=deltasWeight*layer[j].getActivationFunction().derivatedOutput(layer[j].value(),layer[j].output());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void NeuralNetwork::Learning::BackPropagation::computeDeltas(const std::vector<float> &input) {
|
|
||||||
for(std::size_t layerIndex=1;layerIndex<network.size();layerIndex++) {
|
|
||||||
auto &layer=network[layerIndex];
|
|
||||||
auto &prevLayer=network[layerIndex-1];
|
|
||||||
|
|
||||||
std::size_t prevLayerSize=prevLayer.size();
|
|
||||||
std::size_t layerSize=layer.size();
|
|
||||||
|
|
||||||
for(std::size_t j=1;j<layerSize;j++) {
|
|
||||||
float update = slopes[layerIndex][j];
|
|
||||||
for(std::size_t k=0;k<prevLayerSize;k++) {
|
|
||||||
float inputValue = 0.0;
|
|
||||||
if(layerIndex==1 && k!=0) {
|
|
||||||
inputValue = input[k-1];
|
|
||||||
} else {
|
|
||||||
inputValue= prevLayer[k].output();
|
|
||||||
}
|
|
||||||
if(currentBatchSize == 0) {
|
|
||||||
deltas[layerIndex][j][k] = update * inputValue;
|
|
||||||
} else {
|
|
||||||
deltas[layerIndex][j][k] += update * inputValue;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void NeuralNetwork::Learning::BackPropagation::updateWeights() {
|
|
||||||
|
|
||||||
bool enableMoments = momentumWeight > 0.0;
|
bool enableMoments = momentumWeight > 0.0;
|
||||||
|
|
||||||
for(std::size_t layerIndex=1;layerIndex<network.size();layerIndex++) {
|
for(std::size_t layerIndex=1;layerIndex<_network.size();layerIndex++) {
|
||||||
auto &layer = network[layerIndex];
|
auto &layer = _network[layerIndex];
|
||||||
auto &prevLayer = network[layerIndex - 1];
|
auto &prevLayer = _network[layerIndex - 1];
|
||||||
|
|
||||||
std::size_t prevLayerSize = prevLayer.size();
|
std::size_t prevLayerSize = prevLayer.size();
|
||||||
std::size_t layerSize = layer.size();
|
std::size_t layerSize = layer.size();
|
||||||
|
|
||||||
for(std::size_t j = 1; j < layerSize; j++) {
|
for(std::size_t j = 1; j < layerSize; j++) {
|
||||||
for(std::size_t k = 0; k < prevLayerSize; k++) {
|
for(std::size_t k = 0; k < prevLayerSize; k++) {
|
||||||
float delta = deltas[layerIndex][j][k]*learningCoefficient - weightDecay * layer[j].weight(k);
|
float delta = _gradients[layerIndex][j][k]*learningCoefficient - weightDecay * layer[j].weight(k);
|
||||||
|
|
||||||
if(enableMoments) {
|
if(enableMoments) {
|
||||||
delta += momentumWeight * lastDeltas[layerIndex][j][k];
|
delta += momentumWeight * _lastDeltas[layerIndex][j][k];
|
||||||
lastDeltas[layerIndex][j][k]=delta;
|
_lastDeltas[layerIndex][j][k]=delta;
|
||||||
}
|
}
|
||||||
|
|
||||||
layer[j].weight(k)+= delta;
|
layer[j].weight(k)+= delta;
|
||||||
|
|||||||
92
src/NeuralNetwork/Learning/BatchPropagation.cpp
Normal file
92
src/NeuralNetwork/Learning/BatchPropagation.cpp
Normal file
@@ -0,0 +1,92 @@
|
|||||||
|
#include <NeuralNetwork/Learning/BatchPropagation.h>
|
||||||
|
|
||||||
|
void NeuralNetwork::Learning::BatchPropagation::teach(const std::vector<float> &input, const std::vector<float> &expectation) {
|
||||||
|
_network.computeOutput(input);
|
||||||
|
if(!init) {
|
||||||
|
resize();
|
||||||
|
init = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
computeSlopes(expectation);
|
||||||
|
|
||||||
|
computeDeltas(input);
|
||||||
|
if(++_currentBatchSize >= _batchSize) {
|
||||||
|
finishTeaching();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void NeuralNetwork::Learning::BatchPropagation::finishTeaching() {
|
||||||
|
updateWeightsAndEndBatch();
|
||||||
|
_currentBatchSize=0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void NeuralNetwork::Learning::BatchPropagation::computeSlopes(const std::vector<float> &expectation) {
|
||||||
|
const auto& outputLayer=_network[_network.size()-1];
|
||||||
|
for(std::size_t j=1;j<outputLayer.size();j++) {
|
||||||
|
const auto& neuron = outputLayer[j];
|
||||||
|
_slopes[_network.size()-1][j]=_correctionFunction->operator()( expectation[j-1], neuron.output())*
|
||||||
|
neuron.getActivationFunction().derivatedOutput(neuron.value(),neuron.output());
|
||||||
|
}
|
||||||
|
|
||||||
|
for(int layerIndex=static_cast<int>(_network.size()-2);layerIndex>0;layerIndex--) {
|
||||||
|
auto &layer=_network[layerIndex];
|
||||||
|
|
||||||
|
for(std::size_t j=1;j<layer.size();j++) {
|
||||||
|
float deltasWeight = 0;
|
||||||
|
|
||||||
|
for(std::size_t k=1;k<_network[layerIndex+1].size();k++) {
|
||||||
|
deltasWeight+=_slopes[layerIndex+1][k]* _network[layerIndex+1][k].weight(j);
|
||||||
|
}
|
||||||
|
|
||||||
|
_slopes[layerIndex][j]=deltasWeight*layer[j].getActivationFunction().derivatedOutput(layer[j].value(),layer[j].output());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void NeuralNetwork::Learning::BatchPropagation::computeDeltas(const std::vector<float> &input) {
|
||||||
|
for(std::size_t layerIndex=1;layerIndex<_network.size();layerIndex++) {
|
||||||
|
auto &layer=_network[layerIndex];
|
||||||
|
auto &prevLayer=_network[layerIndex-1];
|
||||||
|
|
||||||
|
std::size_t prevLayerSize=prevLayer.size();
|
||||||
|
std::size_t layerSize=layer.size();
|
||||||
|
|
||||||
|
for(std::size_t j=1;j<layerSize;j++) {
|
||||||
|
float update = _slopes[layerIndex][j];
|
||||||
|
for(std::size_t k=0;k<prevLayerSize;k++) {
|
||||||
|
float inputValue = 0.0;
|
||||||
|
if(layerIndex==1 && k!=0) {
|
||||||
|
inputValue = input[k-1];
|
||||||
|
} else {
|
||||||
|
inputValue= prevLayer[k].output();
|
||||||
|
}
|
||||||
|
if(_currentBatchSize == 0) {
|
||||||
|
_gradients[layerIndex][j][k] = update * inputValue;
|
||||||
|
} else {
|
||||||
|
_gradients[layerIndex][j][k] += update * inputValue;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void NeuralNetwork::Learning::BatchPropagation::resize() {
|
||||||
|
_slopes.resize(_network.size());
|
||||||
|
|
||||||
|
for(std::size_t i=0; i < _network.size(); i++) {
|
||||||
|
_slopes[i].resize(_network[i].size());
|
||||||
|
}
|
||||||
|
|
||||||
|
_gradients.resize(_network.size());
|
||||||
|
|
||||||
|
for(std::size_t i = 0; i < _network.size(); i++) {
|
||||||
|
_gradients[i].resize(_network[i].size());
|
||||||
|
if(i > 0) {
|
||||||
|
for(std::size_t j = 0; j < _gradients[i].size(); j++) {
|
||||||
|
_gradients[i][j].resize(_network[i - 1].size());
|
||||||
|
std::fill(_gradients[i][j].begin(), _gradients[i][j].end(), 0.0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
@@ -3,7 +3,7 @@
|
|||||||
#include <cassert>
|
#include <cassert>
|
||||||
#include <immintrin.h>
|
#include <immintrin.h>
|
||||||
|
|
||||||
void NeuralNetwork::Learning::QuickPropagation::updateWeights(const std::vector<float> &input) {
|
void NeuralNetwork::Learning::QuickPropagation::computeDeltas(const std::vector<float> &input) {
|
||||||
|
|
||||||
float shrinkFactor=_maxChange/(_maxChange+1.0);
|
float shrinkFactor=_maxChange/(_maxChange+1.0);
|
||||||
|
|
||||||
@@ -15,20 +15,39 @@ void NeuralNetwork::Learning::QuickPropagation::updateWeights(const std::vector<
|
|||||||
std::size_t layerSize=layer.size();
|
std::size_t layerSize=layer.size();
|
||||||
|
|
||||||
for(std::size_t j=1;j<layerSize;j++) {
|
for(std::size_t j=1;j<layerSize;j++) {
|
||||||
|
for(std::size_t k=1;k<layerSize;k++) {
|
||||||
|
double update = 0.0;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
double inputValue = 0.0;
|
||||||
|
if(layerIndex==1) {
|
||||||
|
inputValue=input[k-1];
|
||||||
|
} else {
|
||||||
|
inputValue=prevLayer[k].output();
|
||||||
|
}
|
||||||
|
|
||||||
|
if(currentBatchSize == 0) {
|
||||||
|
gradients[layerIndex][j][k] = update * inputValue;
|
||||||
|
} else {
|
||||||
|
gradients[layerIndex][j][k] += update * inputValue;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
/*
|
||||||
float newChange=0;
|
float newChange=0;
|
||||||
|
|
||||||
if(fabs (deltas[layerIndex][j])> 0.0001) {
|
if(fabs (gradients[layerIndex][j])> 0.0001) {
|
||||||
if(std::signbit(deltas[layerIndex][j]) == std::signbit(slopes[layerIndex][j])) {
|
if(std::signbit(gradients[layerIndex][j]) == std::signbit(slopes[layerIndex][j])) {
|
||||||
newChange+= slopes[layerIndex][j]*_epsilon;
|
newChange+= slopes[layerIndex][j]*_epsilon;
|
||||||
|
|
||||||
if(fabs(slopes[layerIndex][j]) > fabs(shrinkFactor * previousSlopes[layerIndex][j])) {
|
if(fabs(slopes[layerIndex][j]) > fabs(shrinkFactor * previousSlopes[layerIndex][j])) {
|
||||||
newChange += _maxChange * deltas[layerIndex][j];
|
newChange += _maxChange * gradients[layerIndex][j];
|
||||||
}else {
|
}else {
|
||||||
newChange+=slopes[layerIndex][j]/(previousSlopes[layerIndex][j]-slopes[layerIndex][j]) * deltas[layerIndex][j];
|
newChange+=slopes[layerIndex][j]/(previousSlopes[layerIndex][j]-slopes[layerIndex][j]) * gradients[layerIndex][j];
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
newChange+=slopes[layerIndex][j]/(previousSlopes[layerIndex][j]-slopes[layerIndex][j]) * deltas[layerIndex][j];
|
newChange+=slopes[layerIndex][j]/(previousSlopes[layerIndex][j]-slopes[layerIndex][j]) * gradients[layerIndex][j];
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
newChange+= slopes[layerIndex][j]*_epsilon;
|
newChange+= slopes[layerIndex][j]*_epsilon;
|
||||||
@@ -45,9 +64,7 @@ void NeuralNetwork::Learning::QuickPropagation::updateWeights(const std::vector<
|
|||||||
layer[j].weight(k)+=newChange*(prevLayer[k].output());
|
layer[j].weight(k)+=newChange*(prevLayer[k].output());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
*/
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
slopes.swap(previousSlopes);
|
|
||||||
weightChange.swap(deltas);
|
|
||||||
}
|
}
|
||||||
@@ -1,101 +1,37 @@
|
|||||||
#include <NeuralNetwork/Learning/RProp.h>
|
#include <NeuralNetwork/Learning/RProp.h>
|
||||||
|
|
||||||
void NeuralNetwork::Learning::RProp::teach(const std::vector<float> &input, const std::vector<float> &expectation) {
|
void NeuralNetwork::Learning::RProp::updateWeightsAndEndBatch() {
|
||||||
network.computeOutput(input);
|
|
||||||
resize();
|
|
||||||
computeSlopes(expectation);
|
|
||||||
|
|
||||||
computeDeltas(input);
|
for(std::size_t layerIndex=1;layerIndex<_network.size();layerIndex++) {
|
||||||
if(++currentBatchSize >= batchSize) {
|
auto &layer = _network[layerIndex];
|
||||||
updateWeights();
|
auto &prevLayer = _network[layerIndex - 1];
|
||||||
endBatch();
|
|
||||||
currentBatchSize=0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void NeuralNetwork::Learning::RProp::computeSlopes(const std::vector<float> &expectation) {
|
|
||||||
auto& outputLayer=network[network.size()-1];
|
|
||||||
for(std::size_t j=1;j<outputLayer.size();j++) {
|
|
||||||
auto& neuron = outputLayer[j];
|
|
||||||
slopes[network.size()-1][j]=correctionFunction->operator()( expectation[j-1], neuron.output())*
|
|
||||||
neuron.getActivationFunction().derivatedOutput(neuron.value(),neuron.output());
|
|
||||||
}
|
|
||||||
|
|
||||||
for(int layerIndex=static_cast<int>(network.size()-2);layerIndex>0;layerIndex--) {
|
|
||||||
auto &layer=network[layerIndex];
|
|
||||||
|
|
||||||
for(std::size_t j=1;j<layer.size();j++) {
|
|
||||||
float deltasWeight = 0;
|
|
||||||
|
|
||||||
for(std::size_t k=1;k<network[layerIndex+1].size();k++) {
|
|
||||||
deltasWeight+=slopes[layerIndex+1][k]* network[layerIndex+1][k].weight(j);
|
|
||||||
}
|
|
||||||
|
|
||||||
slopes[layerIndex][j]=deltasWeight*layer[j].getActivationFunction().derivatedOutput(layer[j].value(),layer[j].output());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void NeuralNetwork::Learning::RProp::computeDeltas(const std::vector<float> &input) {
|
|
||||||
for(std::size_t layerIndex=1;layerIndex<network.size();layerIndex++) {
|
|
||||||
auto &layer=network[layerIndex];
|
|
||||||
auto &prevLayer=network[layerIndex-1];
|
|
||||||
|
|
||||||
std::size_t prevLayerSize=prevLayer.size();
|
|
||||||
std::size_t layerSize=layer.size();
|
|
||||||
|
|
||||||
for(std::size_t j=1;j<layerSize;j++) {
|
|
||||||
float update = slopes[layerIndex][j];
|
|
||||||
for(std::size_t k=0;k<prevLayerSize;k++) {
|
|
||||||
float inputValue = 0.0;
|
|
||||||
if(layerIndex==1 && k!=0) {
|
|
||||||
inputValue = input[k-1];
|
|
||||||
} else {
|
|
||||||
inputValue= prevLayer[k].output();
|
|
||||||
}
|
|
||||||
if(currentBatchSize == 0) {
|
|
||||||
gradients[layerIndex][j][k] = update * inputValue;
|
|
||||||
} else {
|
|
||||||
gradients[layerIndex][j][k] += update * inputValue;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void NeuralNetwork::Learning::RProp::updateWeights() {
|
|
||||||
|
|
||||||
for(std::size_t layerIndex=1;layerIndex<network.size();layerIndex++) {
|
|
||||||
auto &layer = network[layerIndex];
|
|
||||||
auto &prevLayer = network[layerIndex - 1];
|
|
||||||
|
|
||||||
std::size_t prevLayerSize = prevLayer.size();
|
std::size_t prevLayerSize = prevLayer.size();
|
||||||
std::size_t layerSize = layer.size();
|
std::size_t layerSize = layer.size();
|
||||||
|
|
||||||
for(std::size_t j = 1; j < layerSize; j++) {
|
for(std::size_t j = 1; j < layerSize; j++) {
|
||||||
for(std::size_t k = 0; k < prevLayerSize; k++) {
|
for(std::size_t k = 0; k < prevLayerSize; k++) {
|
||||||
float gradient = gradients[layerIndex][j][k];
|
float gradient = _gradients[layerIndex][j][k];
|
||||||
float lastGradient = lastGradients[layerIndex][j][k];
|
float lastGradient = _lastGradients[layerIndex][j][k];
|
||||||
|
|
||||||
lastGradients[layerIndex][j][k] = gradient;
|
_lastGradients[layerIndex][j][k] = gradient;
|
||||||
|
|
||||||
float weightChangeDelta = lastWeightChanges[layerIndex][j][k];
|
float weightChangeDelta = _lastWeightChanges[layerIndex][j][k];
|
||||||
|
|
||||||
if(gradient * lastGradient > 0) {
|
if(gradient * lastGradient > 0) {
|
||||||
weightChangeDelta = std::min(weightChangeDelta*weightChangePlus,maxChangeOfWeights);
|
weightChangeDelta = std::min(weightChangeDelta*weightChangePlus,maxChangeOfWeights);
|
||||||
} else if (gradient * lastGradient < 0) {
|
} else if (gradient * lastGradient < 0) {
|
||||||
weightChangeDelta = std::max(weightChangeDelta*weightChangeMinus,minChangeOfWeights);
|
weightChangeDelta = std::max(weightChangeDelta*weightChangeMinus,minChangeOfWeights);
|
||||||
} else {
|
} else {
|
||||||
weightChangeDelta = lastWeightChanges[layerIndex][j][k];
|
weightChangeDelta = _lastWeightChanges[layerIndex][j][k];
|
||||||
}
|
}
|
||||||
|
|
||||||
lastWeightChanges[layerIndex][j][k] = weightChangeDelta;
|
_lastWeightChanges[layerIndex][j][k] = weightChangeDelta;
|
||||||
|
|
||||||
if(gradient > 0) {
|
if(gradient > 0) {
|
||||||
layer[j].weight(k) += weightChangeDelta;
|
layer[j].weight(k) += weightChangeDelta;
|
||||||
} else if (gradient < 0){
|
} else if (gradient < 0){
|
||||||
layer[j].weight(k) -= weightChangeDelta;
|
layer[j].weight(k) -= weightChangeDelta;
|
||||||
} else {
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -13,9 +13,6 @@ target_link_libraries(backpropagation NeuralNetwork gtest gtest_main)
|
|||||||
add_executable(feedforward feedforward.cpp)
|
add_executable(feedforward feedforward.cpp)
|
||||||
target_link_libraries(feedforward NeuralNetwork gtest gtest_main)
|
target_link_libraries(feedforward NeuralNetwork gtest gtest_main)
|
||||||
|
|
||||||
add_executable(optical_backpropagation optical_backpropagation.cpp)
|
|
||||||
target_link_libraries(optical_backpropagation NeuralNetwork gtest gtest_main)
|
|
||||||
|
|
||||||
add_executable(perceptron perceptron.cpp)
|
add_executable(perceptron perceptron.cpp)
|
||||||
target_link_libraries(perceptron NeuralNetwork gtest gtest_main)
|
target_link_libraries(perceptron NeuralNetwork gtest gtest_main)
|
||||||
|
|
||||||
|
|||||||
@@ -48,20 +48,6 @@ TEST(Sigmoid, ParamMinusFive) {
|
|||||||
ASSERT_LT(s(0.7), 0.970788);
|
ASSERT_LT(s(0.7), 0.970788);
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST(SigmoidSSE, ParamMinusZeroPointSeven) {
|
|
||||||
NeuralNetwork::ActivationFunction::Sigmoid s(-0.7);
|
|
||||||
SSE comp;
|
|
||||||
comp.floats[0] = 0.1;
|
|
||||||
comp.floats[1] = 10;
|
|
||||||
comp.sse = s(comp.sse);
|
|
||||||
|
|
||||||
ASSERT_GT(comp.floats[0], 0.517483);
|
|
||||||
ASSERT_LT(comp.floats[0], 0.51750);
|
|
||||||
|
|
||||||
ASSERT_GT(comp.floats[1], 0.998989);
|
|
||||||
ASSERT_LT(comp.floats[1], 0.999189);
|
|
||||||
}
|
|
||||||
|
|
||||||
TEST(Linear, ParamOne) {
|
TEST(Linear, ParamOne) {
|
||||||
NeuralNetwork::ActivationFunction::Linear s(1.0);
|
NeuralNetwork::ActivationFunction::Linear s(1.0);
|
||||||
ASSERT_GT(s(0.5), 0.4999);
|
ASSERT_GT(s(0.5), 0.4999);
|
||||||
|
|||||||
@@ -47,6 +47,7 @@ TEST(BackProp,XOR) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
TEST(BackProp,XORHyperbolicTangent) {
|
TEST(BackProp,XORHyperbolicTangent) {
|
||||||
|
srand(time(NULL));
|
||||||
NeuralNetwork::FeedForward::Network n(2);
|
NeuralNetwork::FeedForward::Network n(2);
|
||||||
NeuralNetwork::ActivationFunction::HyperbolicTangent a(-1);
|
NeuralNetwork::ActivationFunction::HyperbolicTangent a(-1);
|
||||||
n.appendLayer(2,a);
|
n.appendLayer(2,a);
|
||||||
@@ -56,7 +57,7 @@ TEST(BackProp,XORHyperbolicTangent) {
|
|||||||
|
|
||||||
NeuralNetwork::Learning::BackPropagation prop(n);
|
NeuralNetwork::Learning::BackPropagation prop(n);
|
||||||
|
|
||||||
for(int i=0;i<10000;i++) {
|
for(int i=0;i<1500;i++) {
|
||||||
prop.teach({1,0},{1});
|
prop.teach({1,0},{1});
|
||||||
prop.teach({1,1},{0});
|
prop.teach({1,1},{0});
|
||||||
prop.teach({0,0},{0});
|
prop.teach({0,0},{0});
|
||||||
|
|||||||
@@ -45,41 +45,41 @@ int main() {
|
|||||||
|
|
||||||
std::cout << "\tLinear: " <<
|
std::cout << "\tLinear: " <<
|
||||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
||||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef) << "\n";
|
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Linear>(),linearCoef) << "\n";
|
||||||
|
|
||||||
std::cout << "\tOptical: " <<
|
std::cout << "\tOptical: " <<
|
||||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
||||||
new NeuralNetwork::Learning::CorrectionFunction::Optical,opticalCoef) << "\n";
|
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Optical>(),opticalCoef) << "\n";
|
||||||
std::cout << "\tArcTangent: " <<
|
std::cout << "\tArcTangent: " <<
|
||||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
||||||
new NeuralNetwork::Learning::CorrectionFunction::ArcTangent(arcTangent),arcTangentCoef) << "\n";
|
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::ArcTangent>(arcTangent),arcTangentCoef) << "\n";
|
||||||
}
|
}
|
||||||
{
|
{
|
||||||
std::cout << "AND:\n";
|
std::cout << "AND:\n";
|
||||||
std::cout << "\tLinear: " <<
|
std::cout << "\tLinear: " <<
|
||||||
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
||||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef) << "\n";
|
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Linear>(),linearCoef) << "\n";
|
||||||
|
|
||||||
std::cout << "\tOptical: " <<
|
std::cout << "\tOptical: " <<
|
||||||
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
||||||
new NeuralNetwork::Learning::CorrectionFunction::Optical,opticalCoef) << "\n";
|
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Optical>(),opticalCoef) << "\n";
|
||||||
|
|
||||||
std::cout << "\tArcTangent: " <<
|
std::cout << "\tArcTangent: " <<
|
||||||
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
||||||
new NeuralNetwork::Learning::CorrectionFunction::ArcTangent(arcTangent),arcTangentCoef) << "\n";
|
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::ArcTangent>(arcTangent),arcTangentCoef) << "\n";
|
||||||
}
|
}
|
||||||
{
|
{
|
||||||
std::cout << "AND:\n";
|
std::cout << "AND:\n";
|
||||||
std::cout << "\tLinear: " <<
|
std::cout << "\tLinear: " <<
|
||||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
||||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef) << "\n";
|
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Linear>(),linearCoef) << "\n";
|
||||||
|
|
||||||
std::cout << "\tOptical: " <<
|
std::cout << "\tOptical: " <<
|
||||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
||||||
new NeuralNetwork::Learning::CorrectionFunction::Optical,opticalCoef) << "\n";
|
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Optical>(),opticalCoef) << "\n";
|
||||||
|
|
||||||
std::cout << "\tArcTangent: " <<
|
std::cout << "\tArcTangent: " <<
|
||||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
||||||
new NeuralNetwork::Learning::CorrectionFunction::ArcTangent(arcTangent),arcTangentCoef) << "\n";
|
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::ArcTangent>(arcTangent),arcTangentCoef) << "\n";
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -4,6 +4,7 @@
|
|||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include "../include/NeuralNetwork/Learning/BackPropagation.h"
|
#include "../include/NeuralNetwork/Learning/BackPropagation.h"
|
||||||
|
|
||||||
|
#include <chrono>
|
||||||
int main() {
|
int main() {
|
||||||
{ // XOR problem
|
{ // XOR problem
|
||||||
NeuralNetwork::FeedForward::Network n(2);
|
NeuralNetwork::FeedForward::Network n(2);
|
||||||
@@ -16,11 +17,18 @@ int main() {
|
|||||||
n.randomizeWeights();
|
n.randomizeWeights();
|
||||||
|
|
||||||
NeuralNetwork::Learning::BackPropagation prop(n);
|
NeuralNetwork::Learning::BackPropagation prop(n);
|
||||||
|
// prop.setBatchSize(20);
|
||||||
|
// prop.setMomentumWeight(0.8);
|
||||||
|
|
||||||
|
auto start = std::chrono::system_clock::now();
|
||||||
for(int i=0;i<100;i++) {
|
for(int i=0;i<100;i++) {
|
||||||
prop.teach({1,0},{1});
|
prop.teach({1,0},{1});
|
||||||
prop.teach({1,1},{0});
|
prop.teach({1,1},{0});
|
||||||
prop.teach({0,0},{0});
|
prop.teach({0,0},{0});
|
||||||
prop.teach({0,1},{1});
|
prop.teach({0,1},{1});
|
||||||
}
|
}
|
||||||
|
auto end = std::chrono::system_clock::now();
|
||||||
|
std::chrono::duration<double> elapsed_seconds = end -start;
|
||||||
|
std::cout << elapsed_seconds.count() << "\n";
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,124 +0,0 @@
|
|||||||
#include <NeuralNetwork/FeedForward/Network.h>
|
|
||||||
|
|
||||||
#include <NeuralNetwork/Learning/OpticalBackPropagation.h>
|
|
||||||
|
|
||||||
#pragma GCC diagnostic push
|
|
||||||
#pragma GCC diagnostic ignored "-Weffc++"
|
|
||||||
|
|
||||||
#include <gtest/gtest.h>
|
|
||||||
|
|
||||||
#pragma GCC diagnostic pop
|
|
||||||
|
|
||||||
TEST(OpticalBackPropagation,XOR) {
|
|
||||||
NeuralNetwork::FeedForward::Network n(2);
|
|
||||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
|
||||||
n.appendLayer(2,a);
|
|
||||||
n.appendLayer(1,a);
|
|
||||||
|
|
||||||
n.randomizeWeights();
|
|
||||||
|
|
||||||
NeuralNetwork::Learning::OpticalBackPropagation prop(n);
|
|
||||||
|
|
||||||
for(int i=0;i<10000;i++) {
|
|
||||||
prop.teach({1,0},{1});
|
|
||||||
prop.teach({1,1},{0});
|
|
||||||
prop.teach({0,0},{0});
|
|
||||||
prop.teach({0,1},{1});
|
|
||||||
}
|
|
||||||
|
|
||||||
{
|
|
||||||
std::vector<float> ret =n.computeOutput({1,1});
|
|
||||||
ASSERT_LT(ret[0], 0.1);
|
|
||||||
}
|
|
||||||
|
|
||||||
{
|
|
||||||
std::vector<float> ret =n.computeOutput({0,1});
|
|
||||||
ASSERT_GT(ret[0], 0.9);
|
|
||||||
}
|
|
||||||
|
|
||||||
{
|
|
||||||
std::vector<float> ret =n.computeOutput({1,0});
|
|
||||||
ASSERT_GT(ret[0], 0.9);
|
|
||||||
}
|
|
||||||
|
|
||||||
{
|
|
||||||
std::vector<float> ret =n.computeOutput({0,0});
|
|
||||||
ASSERT_LT(ret[0], 0.1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
TEST(OpticalBackPropagation,AND) {
|
|
||||||
NeuralNetwork::FeedForward::Network n(2);
|
|
||||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
|
||||||
n.appendLayer(2,a);
|
|
||||||
n.appendLayer(1,a);
|
|
||||||
|
|
||||||
n.randomizeWeights();
|
|
||||||
|
|
||||||
NeuralNetwork::Learning::OpticalBackPropagation prop(n);
|
|
||||||
|
|
||||||
for(int i=0;i<10000;i++) {
|
|
||||||
prop.teach({1,1},{1});
|
|
||||||
prop.teach({0,0},{0});
|
|
||||||
prop.teach({0,1},{0});
|
|
||||||
prop.teach({1,0},{0});
|
|
||||||
}
|
|
||||||
|
|
||||||
{
|
|
||||||
std::vector<float> ret =n.computeOutput({1,1});
|
|
||||||
ASSERT_GT(ret[0], 0.9);
|
|
||||||
}
|
|
||||||
|
|
||||||
{
|
|
||||||
std::vector<float> ret =n.computeOutput({0,1});
|
|
||||||
ASSERT_LT(ret[0], 0.1);
|
|
||||||
}
|
|
||||||
|
|
||||||
{
|
|
||||||
std::vector<float> ret =n.computeOutput({1,0});
|
|
||||||
ASSERT_LT(ret[0], 0.1);
|
|
||||||
}
|
|
||||||
|
|
||||||
{
|
|
||||||
std::vector<float> ret =n.computeOutput({0,0});
|
|
||||||
ASSERT_LT(ret[0], 0.1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
TEST(OpticalBackPropagation,NOTAND) {
|
|
||||||
NeuralNetwork::FeedForward::Network n(2);
|
|
||||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
|
||||||
n.appendLayer(2,a);
|
|
||||||
n.appendLayer(1,a);
|
|
||||||
|
|
||||||
n.randomizeWeights();
|
|
||||||
|
|
||||||
NeuralNetwork::Learning::OpticalBackPropagation prop(n);
|
|
||||||
|
|
||||||
for(int i=0;i<10000;i++) {
|
|
||||||
prop.teach({1,1},{0});
|
|
||||||
prop.teach({0,0},{1});
|
|
||||||
prop.teach({0,1},{1});
|
|
||||||
prop.teach({1,0},{1});
|
|
||||||
}
|
|
||||||
|
|
||||||
{
|
|
||||||
std::vector<float> ret =n.computeOutput({1,1});
|
|
||||||
ASSERT_LT(ret[0], 0.1);
|
|
||||||
}
|
|
||||||
|
|
||||||
{
|
|
||||||
std::vector<float> ret =n.computeOutput({0,1});
|
|
||||||
ASSERT_GT(ret[0], 0.9);
|
|
||||||
}
|
|
||||||
|
|
||||||
{
|
|
||||||
std::vector<float> ret =n.computeOutput({1,0});
|
|
||||||
ASSERT_GT(ret[0], 0.9);
|
|
||||||
}
|
|
||||||
|
|
||||||
{
|
|
||||||
std::vector<float> ret =n.computeOutput({0,0});
|
|
||||||
ASSERT_GT(ret[0], 0.9);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@@ -4,6 +4,7 @@
|
|||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include "../include/NeuralNetwork/Learning/BackPropagation.h"
|
#include "../include/NeuralNetwork/Learning/BackPropagation.h"
|
||||||
#include "../include/NeuralNetwork/Learning/QuickPropagation.h"
|
#include "../include/NeuralNetwork/Learning/QuickPropagation.h"
|
||||||
|
#include "../include/NeuralNetwork/Learning/RProp.h"
|
||||||
#include "../include/NeuralNetwork/Learning/CorrectionFunction/Optical.h"
|
#include "../include/NeuralNetwork/Learning/CorrectionFunction/Optical.h"
|
||||||
#include "../include/NeuralNetwork/Learning/CorrectionFunction/ArcTangent.h"
|
#include "../include/NeuralNetwork/Learning/CorrectionFunction/ArcTangent.h"
|
||||||
|
|
||||||
@@ -17,6 +18,7 @@
|
|||||||
n.randomizeWeights();\
|
n.randomizeWeights();\
|
||||||
CLASS prop(n,FUN);\
|
CLASS prop(n,FUN);\
|
||||||
prop.setLearningCoefficient(COEF);\
|
prop.setLearningCoefficient(COEF);\
|
||||||
|
prop.setBatchSize(4); \
|
||||||
int error=1; int steps = 0; \
|
int error=1; int steps = 0; \
|
||||||
while(error > 0 && steps <99999) {\
|
while(error > 0 && steps <99999) {\
|
||||||
steps++;\
|
steps++;\
|
||||||
@@ -42,36 +44,47 @@ int main() {
|
|||||||
const float arcTangent=1.5;
|
const float arcTangent=1.5;
|
||||||
|
|
||||||
{
|
{
|
||||||
std::cout << "XOR:\n";
|
std::cout << "XOR Linear:\n";
|
||||||
|
|
||||||
std::cout << "\tBP: " <<
|
std::cout << "\tBP: " <<
|
||||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
||||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef,NeuralNetwork::Learning::BackPropagation) << "\n";
|
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Linear>(),linearCoef,NeuralNetwork::Learning::BackPropagation) << "\n";
|
||||||
std::cout << "\tQP: " <<
|
std::cout << "\tQP: " <<
|
||||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
||||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef,NeuralNetwork::Learning::QuickPropagation) << "\n";
|
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Linear>(),linearCoef,NeuralNetwork::Learning::QuickPropagation) << "\n";
|
||||||
|
std::cout << "\tRProp: " <<
|
||||||
|
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
||||||
|
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Linear>(),linearCoef,NeuralNetwork::Learning::RProp) << "\n";
|
||||||
|
|
||||||
}
|
}
|
||||||
{
|
{
|
||||||
std::cout << "AND:\n";
|
std::cout << "AND Optical:\n";
|
||||||
|
|
||||||
std::cout << "\tBP: " <<
|
std::cout << "\tBP: " <<
|
||||||
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
||||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef,NeuralNetwork::Learning::BackPropagation) << "\n";
|
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Optical>(),opticalCoef,NeuralNetwork::Learning::BackPropagation) << "\n";
|
||||||
|
|
||||||
std::cout << "\tQP: " <<
|
std::cout << "\tQP: " <<
|
||||||
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
||||||
new NeuralNetwork::Learning::CorrectionFunction::Optical,opticalCoef,NeuralNetwork::Learning::QuickPropagation) << "\n";
|
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Optical>(),opticalCoef,NeuralNetwork::Learning::QuickPropagation) << "\n";
|
||||||
|
|
||||||
|
std::cout << "\tRProp: " <<
|
||||||
|
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
||||||
|
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Optical>(),opticalCoef,NeuralNetwork::Learning::RProp) << "\n";
|
||||||
}
|
}
|
||||||
{
|
{
|
||||||
std::cout << "AND:\n";
|
std::cout << "XOR Optical:\n";
|
||||||
|
|
||||||
std::cout << "\tBP: " <<
|
std::cout << "\tBP: " <<
|
||||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
||||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef,NeuralNetwork::Learning::BackPropagation) << "\n";
|
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Optical>(),opticalCoef,NeuralNetwork::Learning::BackPropagation) << "\n";
|
||||||
|
|
||||||
std::cout << "\tQP: " <<
|
std::cout << "\tQP: " <<
|
||||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
||||||
new NeuralNetwork::Learning::CorrectionFunction::Optical,opticalCoef,NeuralNetwork::Learning::QuickPropagation) << "\n";
|
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Optical>(),opticalCoef,NeuralNetwork::Learning::QuickPropagation) << "\n";
|
||||||
|
|
||||||
|
std::cout << "\tRProp: " <<
|
||||||
|
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
||||||
|
std::make_shared<NeuralNetwork::Learning::CorrectionFunction::Optical>(),opticalCoef,NeuralNetwork::Learning::RProp) << "\n";
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user