backprop: momentums + decay, quickprop: renaming
This commit is contained in:
@@ -31,6 +31,22 @@ namespace Learning {
|
||||
|
||||
inline virtual void setLearningCoefficient (const float& coefficient) { learningCoefficient=coefficient; }
|
||||
|
||||
float getMomentumWeight() const {
|
||||
return momentumWeight;
|
||||
}
|
||||
|
||||
void setMomentumWeight(const float& m) {
|
||||
momentumWeight=m;
|
||||
}
|
||||
|
||||
float getWeightDecay() const {
|
||||
return weightDecay;
|
||||
}
|
||||
|
||||
void setWeightDecay(const float& wd) {
|
||||
weightDecay=wd;
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
virtual inline void resize() {
|
||||
@@ -41,11 +57,25 @@ namespace Learning {
|
||||
if(slopes[i].size()!=network[i].size())
|
||||
slopes[i].resize(network[i].size());
|
||||
}
|
||||
|
||||
if(lastDeltas.size()!=network.size())
|
||||
lastDeltas.resize(network.size());
|
||||
|
||||
for(std::size_t i=0; i < network.size(); i++) {
|
||||
if(lastDeltas[i].size()!=network[i].size()) {
|
||||
lastDeltas[i].resize(network[i].size());
|
||||
|
||||
for(std::size_t j = 0; j < lastDeltas[i].size(); j++) {
|
||||
lastDeltas[i][j] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
deltas= lastDeltas;
|
||||
}
|
||||
|
||||
virtual void updateWeights(const std::vector<float> &input);
|
||||
|
||||
virtual void computeDeltas(const std::vector<float> &expectation);
|
||||
virtual void computeSlopes(const std::vector<float> &expectation);
|
||||
|
||||
FeedForward::Network &network;
|
||||
|
||||
@@ -53,7 +83,13 @@ namespace Learning {
|
||||
|
||||
float learningCoefficient;
|
||||
|
||||
float momentumWeight = 0.0;
|
||||
|
||||
float weightDecay = 0.0;
|
||||
|
||||
std::vector<std::vector<float>> slopes;
|
||||
std::vector<std::vector<float>> deltas;
|
||||
std::vector<std::vector<float>> lastDeltas;
|
||||
};
|
||||
}
|
||||
}
|
||||
@@ -36,36 +36,24 @@ namespace NeuralNetwork {
|
||||
slopes[i].resize(network[i].size());
|
||||
}
|
||||
|
||||
if(previousSlopes.size()!=network.size())
|
||||
previousSlopes.resize(network.size());
|
||||
if(deltas.size()!=network.size())
|
||||
deltas.resize(network.size());
|
||||
|
||||
for(std::size_t i=0; i < network.size(); i++) {
|
||||
if(previousSlopes[i].size()!=network[i].size())
|
||||
previousSlopes[i].resize(network[i].size());
|
||||
if(deltas[i].size()!=network[i].size())
|
||||
deltas[i].resize(network[i].size());
|
||||
|
||||
for(std::size_t j=0; j < previousSlopes[i].size(); j++) {
|
||||
previousSlopes[i][j]=1.0;
|
||||
deltas[i][j]=1.0;
|
||||
}
|
||||
}
|
||||
|
||||
if(lastWeightChange.size()!=network.size())
|
||||
lastWeightChange.resize(network.size());
|
||||
|
||||
for(std::size_t i=0; i < network.size(); i++) {
|
||||
if(lastWeightChange[i].size()!=network[i].size())
|
||||
lastWeightChange[i].resize(network[i].size());
|
||||
|
||||
for(std::size_t j=0; j < previousSlopes[i].size(); j++) {
|
||||
lastWeightChange[i][j]=1.0;
|
||||
}
|
||||
}
|
||||
weightChange= lastWeightChange;
|
||||
weightChange= deltas;
|
||||
}
|
||||
|
||||
virtual void updateWeights(const std::vector<float> &input) override;
|
||||
|
||||
std::vector<std::vector<float>> previousSlopes ={};
|
||||
std::vector<std::vector<float>> lastWeightChange ={};
|
||||
std::vector<std::vector<float>> deltas ={};
|
||||
std::vector<std::vector<float>> weightChange ={};
|
||||
};
|
||||
}
|
||||
|
||||
@@ -9,9 +9,11 @@ void NeuralNetwork::Learning::BackPropagation::teach(const std::vector<float> &i
|
||||
|
||||
resize();
|
||||
|
||||
computeDeltas(expectation);
|
||||
computeSlopes(expectation);
|
||||
|
||||
updateWeights(input);
|
||||
|
||||
std::swap(deltas,lastDeltas);
|
||||
}
|
||||
|
||||
|
||||
@@ -28,21 +30,25 @@ void NeuralNetwork::Learning::BackPropagation::updateWeights(const std::vector<f
|
||||
|
||||
float delta =slopes[layerIndex][j]*learningCoefficient;
|
||||
|
||||
layer[j].weight(0)+=delta;
|
||||
//momentum
|
||||
delta += momentumWeight * lastDeltas[layerIndex][j];
|
||||
|
||||
deltas[layerIndex][j]=delta;
|
||||
|
||||
layer[j].weight(0)+=delta - weightDecay *layer[j].weight(0);
|
||||
|
||||
for(std::size_t k=1;k<prevLayerSize;k++) {
|
||||
if(layerIndex==1) {
|
||||
layer[j].weight(k)+=delta*input[k-1];
|
||||
layer[j].weight(k)+=delta*input[k-1] - weightDecay * layer[j].weight(k);
|
||||
} else {
|
||||
layer[j].weight(k)+=delta*prevLayer[k].output();
|
||||
layer[j].weight(k)+=delta*prevLayer[k].output() - weightDecay * layer[j].weight(k);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void NeuralNetwork::Learning::BackPropagation::computeDeltas(const std::vector<float> &expectation) {
|
||||
void NeuralNetwork::Learning::BackPropagation::computeSlopes(const std::vector<float> &expectation) {
|
||||
auto& outputLayer=network[network.size()-1];
|
||||
for(std::size_t j=1;j<outputLayer.size();j++) {
|
||||
auto& neuron = outputLayer[j];
|
||||
|
||||
@@ -18,17 +18,17 @@ void NeuralNetwork::Learning::QuickPropagation::updateWeights(const std::vector<
|
||||
|
||||
float newChange=0;
|
||||
|
||||
if(fabs (lastWeightChange[layerIndex][j])> 0.0001) {
|
||||
if(std::signbit(lastWeightChange[layerIndex][j]) == std::signbit(slopes[layerIndex][j])) {
|
||||
if(fabs (deltas[layerIndex][j])> 0.0001) {
|
||||
if(std::signbit(deltas[layerIndex][j]) == std::signbit(slopes[layerIndex][j])) {
|
||||
newChange+= slopes[layerIndex][j]*_epsilon;
|
||||
|
||||
if(fabs(slopes[layerIndex][j]) > fabs(shrinkFactor * previousSlopes[layerIndex][j])) {
|
||||
newChange += _maxChange * lastWeightChange[layerIndex][j];
|
||||
newChange += _maxChange * deltas[layerIndex][j];
|
||||
}else {
|
||||
newChange+=slopes[layerIndex][j]/(previousSlopes[layerIndex][j]-slopes[layerIndex][j]) * lastWeightChange[layerIndex][j];
|
||||
newChange+=slopes[layerIndex][j]/(previousSlopes[layerIndex][j]-slopes[layerIndex][j]) * deltas[layerIndex][j];
|
||||
}
|
||||
} else {
|
||||
newChange+=slopes[layerIndex][j]/(previousSlopes[layerIndex][j]-slopes[layerIndex][j]) * lastWeightChange[layerIndex][j];
|
||||
newChange+=slopes[layerIndex][j]/(previousSlopes[layerIndex][j]-slopes[layerIndex][j]) * deltas[layerIndex][j];
|
||||
}
|
||||
} else {
|
||||
newChange+= slopes[layerIndex][j]*_epsilon;
|
||||
@@ -49,5 +49,5 @@ void NeuralNetwork::Learning::QuickPropagation::updateWeights(const std::vector<
|
||||
}
|
||||
|
||||
slopes.swap(previousSlopes);
|
||||
weightChange.swap(lastWeightChange);
|
||||
weightChange.swap(deltas);
|
||||
}
|
||||
Reference in New Issue
Block a user