perceptron implementation changed + perceptronLearningAlgorithm and tests
This commit is contained in:
@@ -50,6 +50,7 @@ set (LIBRARY_SOURCES
|
||||
|
||||
src/NeuralNetwork/Learning/BackPropagation.cpp
|
||||
src/NeuralNetwork/Learning/QuickPropagation.cpp
|
||||
src/NeuralNetwork/Learning/PerceptronLearning.cpp
|
||||
|
||||
src/NeuralNetwork/BasisFunction/Linear.cpp
|
||||
src/NeuralNetwork/FeedForward/Layer.cpp
|
||||
@@ -96,7 +97,11 @@ set_property(TEST optical_backpropagation PROPERTY LABELS unit)
|
||||
add_test(quickpropagation tests/quickpropagation)
|
||||
set_property(TEST quickpropagation PROPERTY LABELS unit)
|
||||
|
||||
add_test(perceptron tests/perceptron)
|
||||
set_property(TEST perceptron PROPERTY LABELS unit)
|
||||
|
||||
add_test(perceptron_learning tests/perceptron_learning)
|
||||
set_property(TEST perceptron_learning PROPERTY LABELS unit)
|
||||
|
||||
add_test(feedforward_perf tests/feedforward_perf)
|
||||
set_property(TEST feedforward_perf PROPERTY LABELS perf)
|
||||
|
||||
@@ -13,7 +13,15 @@ namespace FeedForward {
|
||||
|
||||
using Network::computeOutput;
|
||||
using Network::randomizeWeights;
|
||||
using Network::operator[];
|
||||
|
||||
inline std::size_t size() const {
|
||||
return layers[1]->size();
|
||||
}
|
||||
|
||||
inline NeuronInterface& operator[](const std::size_t& neuron) {
|
||||
return layers[1]->operator[](neuron);
|
||||
}
|
||||
|
||||
protected:
|
||||
};
|
||||
}
|
||||
|
||||
@@ -3,19 +3,18 @@
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
#include "CorrectionFunction/Linear.h"
|
||||
#include <NeuralNetwork/FeedForward/Perceptron.h>
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace Learning {
|
||||
|
||||
/** @class BackPropagation
|
||||
* @brief
|
||||
/** @class PerceptronLearning
|
||||
* @brief Basic algorithm for learning Perceptron
|
||||
*/
|
||||
class PerceptronLearning {
|
||||
|
||||
public:
|
||||
inline PerceptronLearning(FeedForward::Network &feedForwardNetwork): network(feedForwardNetwork), learningCoefficient(0.4) {
|
||||
inline PerceptronLearning(FeedForward::Perceptron &perceptronNetwork): perceptron(perceptronNetwork), learningCoefficient(0.1) {
|
||||
}
|
||||
|
||||
virtual ~PerceptronLearning() {
|
||||
@@ -30,7 +29,7 @@ namespace NeuralNetwork {
|
||||
|
||||
protected:
|
||||
|
||||
FeedForward::Network &network;
|
||||
FeedForward::Perceptron &perceptron;
|
||||
|
||||
float learningCoefficient;
|
||||
};
|
||||
|
||||
15
src/NeuralNetwork/Learning/PerceptronLearning.cpp
Normal file
15
src/NeuralNetwork/Learning/PerceptronLearning.cpp
Normal file
@@ -0,0 +1,15 @@
|
||||
#include <NeuralNetwork/Learning/PerceptronLearning.h>
|
||||
|
||||
void NeuralNetwork::Learning::PerceptronLearning::teach(const std::vector<float> &input, const std::vector<float> &output) {
|
||||
std::vector<float> computedOutput=perceptron.computeOutput(input);
|
||||
|
||||
std::size_t outputSize = output.size();
|
||||
|
||||
for(std::size_t i=0; i<outputSize; i++) {
|
||||
perceptron[i+1].weight(0)+=learningCoefficient*(output[i]-computedOutput[i])*1;
|
||||
for(std::size_t inputIndex=0; inputIndex<input.size(); inputIndex++) {
|
||||
float delta = learningCoefficient*(output[i]-computedOutput[i])*2*(input[inputIndex]-0.5);
|
||||
perceptron[i+1].weight(inputIndex+1)+=delta;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -25,6 +25,12 @@ target_link_libraries(feedforward_perf NeuralNetwork)
|
||||
add_executable(optical_backpropagation optical_backpropagation.cpp)
|
||||
target_link_libraries(optical_backpropagation NeuralNetwork)
|
||||
|
||||
add_executable(perceptron perceptron.cpp)
|
||||
target_link_libraries(perceptron NeuralNetwork)
|
||||
|
||||
add_executable(perceptron_learning perceptron_learning.cpp)
|
||||
target_link_libraries(perceptron_learning NeuralNetwork)
|
||||
|
||||
add_executable(recurrent recurrent.cpp)
|
||||
target_link_libraries(recurrent NeuralNetwork)
|
||||
|
||||
|
||||
16
tests/perceptron.cpp
Normal file
16
tests/perceptron.cpp
Normal file
@@ -0,0 +1,16 @@
|
||||
#include <NeuralNetwork/FeedForward/Perceptron.h>
|
||||
|
||||
#include <assert.h>
|
||||
#include <iostream>
|
||||
|
||||
int main() {
|
||||
NeuralNetwork::FeedForward::Perceptron p(2,1);
|
||||
|
||||
p[1].weight(0)=-1.0;
|
||||
p[1].weight(1)=1.001;
|
||||
|
||||
assert(p.computeOutput({1,1})[0] == 1.0);
|
||||
p[1].weight(1)=0.999;
|
||||
|
||||
assert(p.computeOutput({1,1})[0] == 0.0);
|
||||
}
|
||||
41
tests/perceptron_learning.cpp
Normal file
41
tests/perceptron_learning.cpp
Normal file
@@ -0,0 +1,41 @@
|
||||
#include <NeuralNetwork/Learning/PerceptronLearning.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
int main() {
|
||||
{ // XOR problem
|
||||
NeuralNetwork::FeedForward::Perceptron n(2,1);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::PerceptronLearning learn(n);
|
||||
|
||||
for(int i=0;i<10;i++) {
|
||||
learn.teach({1,0},{1});
|
||||
learn.teach({1,1},{1});
|
||||
learn.teach({0,0},{0});
|
||||
learn.teach({0,1},{1});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user