perceptron implementation changed + perceptronLearningAlgorithm and tests

This commit is contained in:
2016-03-08 23:10:38 +01:00
parent 4ef010b965
commit a48298b342
7 changed files with 97 additions and 7 deletions

View File

@@ -50,6 +50,7 @@ set (LIBRARY_SOURCES
src/NeuralNetwork/Learning/BackPropagation.cpp
src/NeuralNetwork/Learning/QuickPropagation.cpp
src/NeuralNetwork/Learning/PerceptronLearning.cpp
src/NeuralNetwork/BasisFunction/Linear.cpp
src/NeuralNetwork/FeedForward/Layer.cpp
@@ -96,7 +97,11 @@ set_property(TEST optical_backpropagation PROPERTY LABELS unit)
add_test(quickpropagation tests/quickpropagation)
set_property(TEST quickpropagation PROPERTY LABELS unit)
add_test(perceptron tests/perceptron)
set_property(TEST perceptron PROPERTY LABELS unit)
add_test(perceptron_learning tests/perceptron_learning)
set_property(TEST perceptron_learning PROPERTY LABELS unit)
add_test(feedforward_perf tests/feedforward_perf)
set_property(TEST feedforward_perf PROPERTY LABELS perf)

View File

@@ -13,7 +13,15 @@ namespace FeedForward {
using Network::computeOutput;
using Network::randomizeWeights;
using Network::operator[];
inline std::size_t size() const {
return layers[1]->size();
}
inline NeuronInterface& operator[](const std::size_t& neuron) {
return layers[1]->operator[](neuron);
}
protected:
};
}

View File

@@ -3,19 +3,18 @@
#include <vector>
#include <cmath>
#include <NeuralNetwork/FeedForward/Network.h>
#include "CorrectionFunction/Linear.h"
#include <NeuralNetwork/FeedForward/Perceptron.h>
namespace NeuralNetwork {
namespace Learning {
/** @class BackPropagation
* @brief
/** @class PerceptronLearning
* @brief Basic algorithm for learning Perceptron
*/
class PerceptronLearning {
public:
inline PerceptronLearning(FeedForward::Network &feedForwardNetwork): network(feedForwardNetwork), learningCoefficient(0.4) {
inline PerceptronLearning(FeedForward::Perceptron &perceptronNetwork): perceptron(perceptronNetwork), learningCoefficient(0.1) {
}
virtual ~PerceptronLearning() {
@@ -30,7 +29,7 @@ namespace NeuralNetwork {
protected:
FeedForward::Network &network;
FeedForward::Perceptron &perceptron;
float learningCoefficient;
};

View File

@@ -0,0 +1,15 @@
#include <NeuralNetwork/Learning/PerceptronLearning.h>
void NeuralNetwork::Learning::PerceptronLearning::teach(const std::vector<float> &input, const std::vector<float> &output) {
std::vector<float> computedOutput=perceptron.computeOutput(input);
std::size_t outputSize = output.size();
for(std::size_t i=0; i<outputSize; i++) {
perceptron[i+1].weight(0)+=learningCoefficient*(output[i]-computedOutput[i])*1;
for(std::size_t inputIndex=0; inputIndex<input.size(); inputIndex++) {
float delta = learningCoefficient*(output[i]-computedOutput[i])*2*(input[inputIndex]-0.5);
perceptron[i+1].weight(inputIndex+1)+=delta;
}
}
}

View File

@@ -25,6 +25,12 @@ target_link_libraries(feedforward_perf NeuralNetwork)
add_executable(optical_backpropagation optical_backpropagation.cpp)
target_link_libraries(optical_backpropagation NeuralNetwork)
add_executable(perceptron perceptron.cpp)
target_link_libraries(perceptron NeuralNetwork)
add_executable(perceptron_learning perceptron_learning.cpp)
target_link_libraries(perceptron_learning NeuralNetwork)
add_executable(recurrent recurrent.cpp)
target_link_libraries(recurrent NeuralNetwork)

16
tests/perceptron.cpp Normal file
View File

@@ -0,0 +1,16 @@
#include <NeuralNetwork/FeedForward/Perceptron.h>
#include <assert.h>
#include <iostream>
int main() {
NeuralNetwork::FeedForward::Perceptron p(2,1);
p[1].weight(0)=-1.0;
p[1].weight(1)=1.001;
assert(p.computeOutput({1,1})[0] == 1.0);
p[1].weight(1)=0.999;
assert(p.computeOutput({1,1})[0] == 0.0);
}

View File

@@ -0,0 +1,41 @@
#include <NeuralNetwork/Learning/PerceptronLearning.h>
#include <cassert>
#include <iostream>
int main() {
{ // XOR problem
NeuralNetwork::FeedForward::Perceptron n(2,1);
n.randomizeWeights();
NeuralNetwork::Learning::PerceptronLearning learn(n);
for(int i=0;i<10;i++) {
learn.teach({1,0},{1});
learn.teach({1,1},{1});
learn.teach({0,0},{0});
learn.teach({0,1},{1});
}
{
std::vector<float> ret =n.computeOutput({1,1});
assert(ret[0] > 0.9);
}
{
std::vector<float> ret =n.computeOutput({0,1});
assert(ret[0] > 0.9);
}
{
std::vector<float> ret =n.computeOutput({1,0});
assert(ret[0] > 0.9);
}
{
std::vector<float> ret =n.computeOutput({0,0});
assert(ret[0] < 0.1);
}
}
}