started moving learning algos to new namespace Machnine Learning
This commit is contained in:
33
Makefile
33
Makefile
@@ -7,23 +7,35 @@ all:|pre libs
|
|||||||
pre:
|
pre:
|
||||||
@mkdir -p lib
|
@mkdir -p lib
|
||||||
|
|
||||||
libs: genetics nn
|
libs: ml genetics nn
|
||||||
|
|
||||||
test: all
|
test: all
|
||||||
make -C tests
|
make -C tests
|
||||||
|
|
||||||
nn: | nn_build lib/NeuronNetwork.a lib/NeuronNetwork.so
|
|
||||||
|
|
||||||
lib/NeuronNetwork.so: ./src/NeuronNetwork/NeuronNetwork.so
|
ml: | ml_build lib/MachineLearning.a lib/MachineLearning.so
|
||||||
cp ./src/NeuronNetwork/NeuronNetwork.so ./lib/
|
|
||||||
|
|
||||||
lib/NeuronNetwork.a: ./src/NeuronNetwork/NeuronNetwork.a
|
lib/MachineLearning.so: ./src/MachineLearning/MachineLearning.so
|
||||||
cp ./src/NeuronNetwork/NeuronNetwork.a ./lib/
|
cp ./src/MachineLearning/MachineLearning.so ./lib/
|
||||||
cp ./src/NeuronNetwork/NeuronNetwork.nm ./lib/
|
|
||||||
|
lib/MachineLearning.a: ./src/MachineLearning/MachineLearning.a
|
||||||
|
cp ./src/MachineLearning/MachineLearning.a ./lib/
|
||||||
|
cp ./src/MachineLearning/MachineLearning.nm ./lib/
|
||||||
|
|
||||||
|
ml_build:
|
||||||
|
@make -C src/MachineLearning
|
||||||
|
|
||||||
|
nn: | nn_build lib/NeuralNetwork.a lib/NeuralNetwork.so
|
||||||
|
|
||||||
|
lib/NeuralNetwork.so: ./src/NeuralNetwork/NeuralNetwork.so
|
||||||
|
cp ./src/NeuralNetwork/NeuralNetwork.so ./lib/
|
||||||
|
|
||||||
|
lib/NeuralNetwork.a: ./src/NeuralNetwork/NeuralNetwork.a
|
||||||
|
cp ./src/NeuralNetwork/NeuralNetwork.a ./lib/
|
||||||
|
cp ./src/NeuralNetwork/NeuralNetwork.nm ./lib/
|
||||||
|
|
||||||
nn_build:
|
nn_build:
|
||||||
@make -C src/NeuronNetwork
|
@make -C src/NeuralNetwork
|
||||||
|
|
||||||
|
|
||||||
genetics: | genetics_build lib/Genetics.a lib/Genetics.so
|
genetics: | genetics_build lib/Genetics.a lib/Genetics.so
|
||||||
|
|
||||||
@@ -38,8 +50,9 @@ genetics_build:
|
|||||||
@make -C src/Genetics
|
@make -C src/Genetics
|
||||||
|
|
||||||
clean:
|
clean:
|
||||||
|
@make -C src/MachineLearning clean
|
||||||
@make -C src/Genetics clean
|
@make -C src/Genetics clean
|
||||||
@make -C src/NeuronNetwork clean
|
@make -C src/NeuralNetwork clean
|
||||||
@make -C tests clean
|
@make -C tests clean
|
||||||
#@rm -f ./*.so ./*.a ./*.nm
|
#@rm -f ./*.so ./*.a ./*.nm
|
||||||
@rm -f ./lib/*.so ./lib/*.a ./lib/*.nm
|
@rm -f ./lib/*.so ./lib/*.a ./lib/*.nm
|
||||||
|
|||||||
@@ -5,7 +5,7 @@ CXXFLAGS+= -std=c++14
|
|||||||
CXXFLAGS+= -pg -fPIC
|
CXXFLAGS+= -pg -fPIC
|
||||||
CXXFLAGS+= -g
|
CXXFLAGS+= -g
|
||||||
CXXFLAGS+= -fPIC -pthread
|
CXXFLAGS+= -fPIC -pthread
|
||||||
|
CXXFLAGS+= -DUSE_SSE
|
||||||
OPTIMALIZATION = -O3 -march=native -mtune=native
|
OPTIMALIZATION = -O3 -march=native -mtune=native
|
||||||
|
|
||||||
%.o : %.cpp %.h
|
%.o : %.cpp %.h
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
#include "./IO"
|
#include "./IO"
|
||||||
|
|
||||||
Shin::NeuronNetwork::IO Shin::NeuronNetwork::IO::operator+(const IO &r)
|
Shin::IO Shin::IO::operator+(const IO &r)
|
||||||
{
|
{
|
||||||
Shin::NeuronNetwork::IO tmp;
|
Shin::NeuronNetwork::IO tmp;
|
||||||
for(float a:this->data)
|
for(float a:this->data)
|
||||||
@@ -6,13 +6,11 @@
|
|||||||
|
|
||||||
namespace Shin
|
namespace Shin
|
||||||
{
|
{
|
||||||
namespace NeuronNetwork
|
|
||||||
{
|
|
||||||
class IO
|
class IO
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
IO() {};
|
IO() {};
|
||||||
IO(std::vector<float> &d) : data(d) {}
|
IO(const std::vector<float> &d) : data(d) {}
|
||||||
IO(const IO &old) : data(old.data) {}
|
IO(const IO &old) : data(old.data) {}
|
||||||
IO(const std::initializer_list<float> &a):data(a) { }
|
IO(const std::initializer_list<float> &a):data(a) { }
|
||||||
virtual ~IO() {};
|
virtual ~IO() {};
|
||||||
@@ -27,5 +25,4 @@ class IO
|
|||||||
private:
|
private:
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
}
|
|
||||||
#endif
|
#endif
|
||||||
35
src/MachineLearning/Learning.h
Normal file
35
src/MachineLearning/Learning.h
Normal file
@@ -0,0 +1,35 @@
|
|||||||
|
#ifndef _S_ML_LEARNING_H_
|
||||||
|
#define _S_ML_LEARNING_H_
|
||||||
|
|
||||||
|
#include <cstddef>
|
||||||
|
|
||||||
|
namespace Shin
|
||||||
|
{
|
||||||
|
namespace MachineLearning
|
||||||
|
{
|
||||||
|
const float LearningCoeficient=0.4;
|
||||||
|
const float DefaultNoiseSize=500;
|
||||||
|
class Learning
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
inline Learning() {};
|
||||||
|
inline virtual ~Learning() {};
|
||||||
|
|
||||||
|
inline virtual void setLearningCoeficient (const float& coef) { learningCoeficient=coef; };
|
||||||
|
|
||||||
|
inline virtual void allowThreading() final {allowThreads=1;}
|
||||||
|
inline virtual void disableThreading() final {allowThreads=0;}
|
||||||
|
|
||||||
|
inline virtual void allowNoise() final {noise=1;}
|
||||||
|
inline virtual void disableNoise() final {noise=0;}
|
||||||
|
inline virtual void setNoiseSize(const unsigned& milipercents) final { noiseSize=milipercents; }
|
||||||
|
|
||||||
|
protected:
|
||||||
|
float learningCoeficient=Shin::MachineLearning::LearningCoeficient;
|
||||||
|
bool allowThreads=0;
|
||||||
|
bool noise=0;
|
||||||
|
unsigned noiseSize=Shin::MachineLearning::DefaultNoiseSize;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
24
src/MachineLearning/Makefile
Normal file
24
src/MachineLearning/Makefile
Normal file
@@ -0,0 +1,24 @@
|
|||||||
|
OBJFILES=\
|
||||||
|
QLearning.o
|
||||||
|
|
||||||
|
LINKFILES=
|
||||||
|
|
||||||
|
LIBNAME=MachineLearning
|
||||||
|
|
||||||
|
include ../../Makefile.const
|
||||||
|
|
||||||
|
all: lib
|
||||||
|
|
||||||
|
lib: $(LIBNAME).so $(LIBNAME).a
|
||||||
|
|
||||||
|
$(LIBNAME).so: $(OBJFILES)
|
||||||
|
$(CXX) -shared $(CXXFLAGS) $(OBJFILES) $(LINKFILES) -o $(LIBNAME).so
|
||||||
|
|
||||||
|
$(LIBNAME).a: $(OBJFILES) ./Learning.h
|
||||||
|
rm -f $(LIBNAME).a # create new library
|
||||||
|
ar rcv $(LIBNAME).a $(OBJFILES) $(LINKFILES)
|
||||||
|
ranlib $(LIBNAME).a
|
||||||
|
nm --demangle $(LIBNAME).a > $(LIBNAME).nm
|
||||||
|
|
||||||
|
clean:
|
||||||
|
@rm -f ./*.o ./*.so ./*.a ./*.nm ./*/*.o
|
||||||
@@ -3,28 +3,29 @@
|
|||||||
|
|
||||||
#include <map>
|
#include <map>
|
||||||
|
|
||||||
#include "../../Solution.h"
|
#include "Unsupervised.h"
|
||||||
#include "../../FeedForward.h"
|
|
||||||
#include "../BackPropagation.h"
|
#include "../Solution.h"
|
||||||
#include "../OpticalBackPropagation.h"
|
//#include "../FeedForward.h"
|
||||||
|
//#include "BackPropagation.h"
|
||||||
|
//#include "OpticalBackPropagation.h"
|
||||||
|
|
||||||
|
|
||||||
namespace Shin
|
namespace Shin
|
||||||
{
|
{
|
||||||
namespace NeuronNetwork
|
namespace MachineLearning
|
||||||
{
|
|
||||||
namespace RL
|
|
||||||
{
|
{
|
||||||
class QFunction
|
class QFunction
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
QFunction();
|
QFunction();
|
||||||
virtual ~QFunction();
|
virtual ~QFunction();
|
||||||
virtual void learnDelayed(std::vector<std::pair<Solution,Problem>> &p, float quality)=0;
|
//virtual void learnDelayed(std::vector<std::pair<Solution,Problem>> &p, float quality)=0;
|
||||||
virtual void learn(Solution &s, Problem &p, float quality)=0;
|
//virtual void learn(Solution &s, Problem &p, float quality)=0;
|
||||||
protected:
|
protected:
|
||||||
float learningCoeficient;
|
float learningCoeficient;
|
||||||
};
|
};
|
||||||
|
/*
|
||||||
class QFunctionTable : public QFunction
|
class QFunctionTable : public QFunction
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
@@ -83,15 +84,11 @@ namespace RL
|
|||||||
|
|
||||||
virtual int getChoice(Problem &p);
|
virtual int getChoice(Problem &p);
|
||||||
virtual Solution getSolution(Problem &p) {return function->solve(p);}
|
virtual Solution getSolution(Problem &p) {return function->solve(p);}
|
||||||
void setLearningCoeficient(double ok, double err) {learningA=ok;learningB=err;};
|
|
||||||
void opticalBackPropagation() {delete b; b=new Learning::OpticalBackPropagation(*function);};
|
|
||||||
private:
|
private:
|
||||||
Learning::BackPropagation *b;
|
Learning::BackPropagation *b;
|
||||||
FeedForward * function;
|
FeedForward * function;
|
||||||
float learningA=0.05;
|
|
||||||
float learningB=0.008;
|
|
||||||
};
|
};
|
||||||
}
|
*/
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
32
src/MachineLearning/QLearning.cpp
Normal file
32
src/MachineLearning/QLearning.cpp
Normal file
@@ -0,0 +1,32 @@
|
|||||||
|
#include "./QLearning"
|
||||||
|
|
||||||
|
void Shin::MachineLearning::QLearning::learnDelayed(std::vector< std::pair< Shin::Problem, int > >& p, float quality)
|
||||||
|
{
|
||||||
|
std::vector<std::pair<Problem,Solution>> q;
|
||||||
|
register int solSize=0;
|
||||||
|
if(p.size()>0)
|
||||||
|
solSize=getSolution(p[0].first).size();
|
||||||
|
if (!solSize)
|
||||||
|
return;
|
||||||
|
|
||||||
|
for(size_t i=0;i<p.size();i++)
|
||||||
|
{
|
||||||
|
Solution s;
|
||||||
|
for(int j=0;j<solSize;j++)
|
||||||
|
{
|
||||||
|
s.push_back(j==p[i].second?1:0);
|
||||||
|
}
|
||||||
|
q.push_back(std::pair<Problem,Solution>(p[i].first,s));
|
||||||
|
}
|
||||||
|
learnDelayed(q,quality);
|
||||||
|
}
|
||||||
|
|
||||||
|
void Shin::MachineLearning::QLearning::learnDelayed(std::vector< std::pair<Shin::Problem, Shin::Solution> >& p, float quality)
|
||||||
|
{
|
||||||
|
for(int i=p.size()-1;i>=0;i--)
|
||||||
|
{
|
||||||
|
auto &pair=p[i];
|
||||||
|
learn(pair.first,pair.second,quality);
|
||||||
|
quality*=0.3;
|
||||||
|
}
|
||||||
|
}
|
||||||
101
src/MachineLearning/QLearning.h
Normal file
101
src/MachineLearning/QLearning.h
Normal file
@@ -0,0 +1,101 @@
|
|||||||
|
#ifndef _QLEARNING_H_
|
||||||
|
#define _QLEARNING_H_
|
||||||
|
|
||||||
|
#include <cstddef>
|
||||||
|
#include <map>
|
||||||
|
|
||||||
|
#include "Unsupervised.h"
|
||||||
|
#include "../NeuralNetwork/FeedForward.h"
|
||||||
|
|
||||||
|
/*#include "BackPropagation.h"
|
||||||
|
#include "OpticalBackPropagation.h"
|
||||||
|
#include "../FeedForward.h"
|
||||||
|
#include "Unsupervised.h"
|
||||||
|
#include "QFunction.h"
|
||||||
|
*/
|
||||||
|
/*
|
||||||
|
* http://www2.econ.iastate.edu/tesfatsi/RLUsersGuide.ICAC2005.pdf
|
||||||
|
* http://www.autonlab.org/tutorials/rl06.pdf
|
||||||
|
* http://www.nbu.bg/cogs/events/2000/Readings/Petrov/rltutorial.pdf
|
||||||
|
*
|
||||||
|
* http://www.applied-mathematics.net/qlearning/qlearning.html
|
||||||
|
* http://nn.cs.utexas.edu/downloads/papers/stanley.gecco02_1.pdf
|
||||||
|
*
|
||||||
|
* http://stackoverflow.com/questions/740389/good-implementations-of-reinforced-learning
|
||||||
|
*
|
||||||
|
* http://stackoverflow.com/questions/10722064/training-a-neural-network-with-reinforcement-learning
|
||||||
|
*
|
||||||
|
* http://remi.coulom.free.fr/Thesis/
|
||||||
|
* http://remi.coulom.free.fr/Publications/Thesis.pdf
|
||||||
|
*
|
||||||
|
* http://link.springer.com/article/10.1007/BF00992696
|
||||||
|
*
|
||||||
|
* http://scholar.google.cz/scholar?start=10&q=reinforcement+learning+feedforward&hl=en&as_sdt=0,5&as_vis=1
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
namespace Shin
|
||||||
|
{
|
||||||
|
namespace MachineLearning
|
||||||
|
{
|
||||||
|
class QLearning
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
inline QLearning() {};
|
||||||
|
virtual ~QLearning() {} ;
|
||||||
|
|
||||||
|
QLearning(const QLearning&) =delete;
|
||||||
|
QLearning& operator=(const QLearning&) =delete;
|
||||||
|
|
||||||
|
virtual void learnDelayed(std::vector<std::pair<Problem,Solution>> &p, float quality) final;
|
||||||
|
virtual void learnDelayed(std::vector<std::pair<Problem,int>> &p, float quality) final;
|
||||||
|
|
||||||
|
virtual void learn(Problem &p,Solution &s, float quality)=0;
|
||||||
|
virtual void learn(Problem &p,int action, float quality)=0;
|
||||||
|
|
||||||
|
inline virtual void setLearningCoeficient(const float& a) {setLearningCoeficient(a,a);};
|
||||||
|
inline void setLearningCoeficient(const float& ok, const float& err) {learningA=ok;learningB=err;};
|
||||||
|
|
||||||
|
virtual Solution getSolution(Problem &p)=0;
|
||||||
|
int getChoice(Problem &p);
|
||||||
|
protected:
|
||||||
|
float learningA=0.05;
|
||||||
|
float learningB=0.008;
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
class QLearningNetwork : public QLearning
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
QLearningNetwork(size_t input, size_t size, size_t choices): QLearning(),function({input,size,choices}) {};
|
||||||
|
QLearningNetwork(std::initializer_list<size_t> s): QLearning(),function(s) {};
|
||||||
|
|
||||||
|
QLearningNetwork(const QLearningNetwork&)=delete;
|
||||||
|
QLearningNetwork operator=(const QLearningNetwork&)=delete;
|
||||||
|
|
||||||
|
virtual void learn(Problem &p,Solution &s, float quality) override;
|
||||||
|
virtual void learn(Problem &p,int action, float quality) override;
|
||||||
|
|
||||||
|
virtual Solution getSolution(Problem &p) override {return function.solve(p);}
|
||||||
|
protected:
|
||||||
|
Shin::NeuralNetwork::FeedForward function;
|
||||||
|
};
|
||||||
|
|
||||||
|
class QLearningTable : public QLearning
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
QLearningTable():QLearning(),data() {};
|
||||||
|
|
||||||
|
QLearningTable(const QLearningTable&)=delete;
|
||||||
|
QLearningTable operator=(const QLearningTable&)=delete;
|
||||||
|
|
||||||
|
virtual void learn(Problem &p,Solution &s, float quality) override;
|
||||||
|
virtual void learn(Problem &p,int action, float quality) override;
|
||||||
|
|
||||||
|
virtual Solution getSolution(Problem &p) override;
|
||||||
|
protected:
|
||||||
|
std::map<Problem,std::map<int,std::pair<float,int>>> data;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
18
src/MachineLearning/Unsupervised.h
Normal file
18
src/MachineLearning/Unsupervised.h
Normal file
@@ -0,0 +1,18 @@
|
|||||||
|
#ifndef _UNSUPERVISEDLEARNING_H_
|
||||||
|
#define _UNSUPERVISEDLEARNING_H_
|
||||||
|
|
||||||
|
#include "./Learning.h"
|
||||||
|
|
||||||
|
namespace Shin
|
||||||
|
{
|
||||||
|
namespace MachineLearning
|
||||||
|
{
|
||||||
|
class Unsupervised : public Learning
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
Unsupervised(): Learning() {};
|
||||||
|
virtual ~Unsupervised() {};
|
||||||
|
};
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
@@ -1,6 +1,6 @@
|
|||||||
#include "FeedForward"
|
#include "FeedForward"
|
||||||
|
|
||||||
using namespace Shin::NeuronNetwork;
|
using namespace Shin::NeuralNetwork;
|
||||||
|
|
||||||
FFLayer::~FFLayer()
|
FFLayer::~FFLayer()
|
||||||
{
|
{
|
||||||
@@ -14,7 +14,7 @@ FFLayer::~FFLayer()
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
FFNeuron& FFLayer::operator[](size_t neuron)
|
FFNeuron& FFLayer::operator[](const size_t& neuron)
|
||||||
{
|
{
|
||||||
if(neurons==nullptr)
|
if(neurons==nullptr)
|
||||||
{
|
{
|
||||||
@@ -33,7 +33,7 @@ FFNeuron& FFLayer::operator[](size_t neuron)
|
|||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
FeedForward::FeedForward(std::initializer_list< int > s, double lam): ACyclicNetwork(lam),layers(s.size())
|
FeedForward::FeedForward(std::initializer_list<size_t> s, double lam): ACyclicNetwork(lam),layers(s.size())
|
||||||
{
|
{
|
||||||
weights= new float**[s.size()];
|
weights= new float**[s.size()];
|
||||||
potentials= new float*[s.size()];
|
potentials= new float*[s.size()];
|
||||||
@@ -158,7 +158,7 @@ void FeedForward::solvePart(float *newSolution, register size_t begin, size_t en
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
Solution FeedForward::solve(const Problem& p)
|
Shin::Solution FeedForward::solve(const Shin::Problem& p)
|
||||||
{
|
{
|
||||||
register float* sol=sums[0];
|
register float* sol=sums[0];
|
||||||
|
|
||||||
@@ -203,7 +203,7 @@ Solution FeedForward::solve(const Problem& p)
|
|||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
FFLayer& FeedForward::operator[](size_t l)
|
FFLayer& FeedForward::operator[](const size_t& l)
|
||||||
{
|
{
|
||||||
if(ffLayers==nullptr)
|
if(ffLayers==nullptr)
|
||||||
{
|
{
|
||||||
@@ -1,9 +1,8 @@
|
|||||||
#ifndef _S_NN_FF_H_
|
#ifndef _S_NN_FF_H_
|
||||||
#define _S_NN_FF_H_
|
#define _S_NN_FF_H_
|
||||||
|
|
||||||
#include "Problem"
|
#include "../Problem"
|
||||||
#include "Solution"
|
#include "../Solution"
|
||||||
#include "Neuron"
|
|
||||||
#include "Network"
|
#include "Network"
|
||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
@@ -23,7 +22,7 @@
|
|||||||
|
|
||||||
namespace Shin
|
namespace Shin
|
||||||
{
|
{
|
||||||
namespace NeuronNetwork
|
namespace NeuralNetwork
|
||||||
{
|
{
|
||||||
class FFNeuron : public Neuron
|
class FFNeuron : public Neuron
|
||||||
{
|
{
|
||||||
@@ -35,14 +34,14 @@ namespace NeuronNetwork
|
|||||||
FFNeuron(float &pot, float *w, float &s, float &i,float lam):potential(pot),weights(w),sum(s),inputs(i),lambda(lam) { }
|
FFNeuron(float &pot, float *w, float &s, float &i,float lam):potential(pot),weights(w),sum(s),inputs(i),lambda(lam) { }
|
||||||
|
|
||||||
inline virtual float getPotential() const override {return potential;}
|
inline virtual float getPotential() const override {return potential;}
|
||||||
inline virtual void setPotential(float p) { potential=p;}
|
inline virtual void setPotential(const float& p) override { potential=p;}
|
||||||
|
|
||||||
inline virtual float getWeight(size_t i ) const override { return weights[i];}
|
inline virtual float getWeight(const size_t& i ) const override { return weights[i];}
|
||||||
inline virtual void setWeight(size_t i,float p) override { weights[i]=p; }
|
inline virtual void setWeight(const size_t& i,const float &p) override { weights[i]=p; }
|
||||||
|
|
||||||
inline virtual float output() const { return sum; }
|
inline virtual float output() const override { return sum; }
|
||||||
inline virtual float input() const { return inputs; }
|
inline virtual float input() const override { return inputs; }
|
||||||
inline virtual float derivatedOutput() const { return lambda*output()*(1.0-output()); }
|
inline virtual float derivatedOutput() const override { return lambda*output()*(1.0-output()); }
|
||||||
protected:
|
protected:
|
||||||
float &potential;
|
float &potential;
|
||||||
float *weights;
|
float *weights;
|
||||||
@@ -61,7 +60,7 @@ namespace NeuronNetwork
|
|||||||
FFLayer(const FFLayer &) = delete;
|
FFLayer(const FFLayer &) = delete;
|
||||||
FFLayer& operator=(const FFLayer &) = delete;
|
FFLayer& operator=(const FFLayer &) = delete;
|
||||||
|
|
||||||
virtual FFNeuron& operator[](size_t layer) override;
|
virtual FFNeuron& operator[](const size_t& layer) override;
|
||||||
inline virtual size_t size() const override {return layerSize;};
|
inline virtual size_t size() const override {return layerSize;};
|
||||||
protected:
|
protected:
|
||||||
FFNeuron **neurons=nullptr;
|
FFNeuron **neurons=nullptr;
|
||||||
@@ -76,7 +75,7 @@ namespace NeuronNetwork
|
|||||||
class FeedForward:public ACyclicNetwork
|
class FeedForward:public ACyclicNetwork
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
FeedForward(std::initializer_list<int> s, double lam=Shin::NeuronNetwork::lambda);
|
FeedForward(std::initializer_list<size_t> s, double lam=Shin::NeuralNetwork::lambda);
|
||||||
virtual ~FeedForward();
|
virtual ~FeedForward();
|
||||||
|
|
||||||
FeedForward(const FeedForward &f) = delete; //TODO
|
FeedForward(const FeedForward &f) = delete; //TODO
|
||||||
@@ -84,7 +83,7 @@ namespace NeuronNetwork
|
|||||||
|
|
||||||
virtual Solution solve(const Problem& p) override;
|
virtual Solution solve(const Problem& p) override;
|
||||||
virtual size_t size() const override { return layers;};
|
virtual size_t size() const override { return layers;};
|
||||||
virtual FFLayer& operator[](size_t l) override;
|
virtual FFLayer& operator[](const size_t& l) override;
|
||||||
protected:
|
protected:
|
||||||
void solvePart(float *newSolution, size_t begin, size_t end,size_t prevSize, float* sol,size_t layer);
|
void solvePart(float *newSolution, size_t begin, size_t end,size_t prevSize, float* sol,size_t layer);
|
||||||
private:
|
private:
|
||||||
@@ -1,12 +1,6 @@
|
|||||||
#include "./BackPropagation"
|
#include "./BackPropagation"
|
||||||
#include <thread>
|
|
||||||
|
|
||||||
Shin::NeuronNetwork::Learning::BackPropagation::BackPropagation(FeedForward &n): Supervised(n)
|
Shin::NeuralNetwork::Learning::BackPropagation::~BackPropagation()
|
||||||
{
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
Shin::NeuronNetwork::Learning::BackPropagation::~BackPropagation()
|
|
||||||
{
|
{
|
||||||
if(deltas!=nullptr)
|
if(deltas!=nullptr)
|
||||||
{
|
{
|
||||||
@@ -16,7 +10,7 @@ Shin::NeuronNetwork::Learning::BackPropagation::~BackPropagation()
|
|||||||
delete[] deltas;
|
delete[] deltas;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Shin::NeuronNetwork::Learning::BackPropagation::propagate(const Shin::NeuronNetwork::Solution& expectation)
|
void Shin::NeuralNetwork::Learning::BackPropagation::propagate(const Shin::Solution& expectation)
|
||||||
{
|
{
|
||||||
|
|
||||||
if(deltas==nullptr)
|
if(deltas==nullptr)
|
||||||
@@ -93,9 +87,9 @@ void Shin::NeuronNetwork::Learning::BackPropagation::propagate(const Shin::Neuro
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
float Shin::NeuronNetwork::Learning::BackPropagation::teach(const Shin::NeuronNetwork::Problem& p, const Shin::NeuronNetwork::Solution& solution)
|
float Shin::NeuralNetwork::Learning::BackPropagation::teach(const Shin::Problem& p, const Shin::Solution& solution)
|
||||||
{
|
{
|
||||||
Shin::NeuronNetwork::Solution a=network.solve(p);
|
Shin::Solution a=network.solve(p);
|
||||||
double error=calculateError(solution,a);
|
double error=calculateError(solution,a);
|
||||||
|
|
||||||
Solution s;
|
Solution s;
|
||||||
@@ -2,11 +2,12 @@
|
|||||||
#define _BACK_PROPAGATION_H_
|
#define _BACK_PROPAGATION_H_
|
||||||
|
|
||||||
#include <math.h>
|
#include <math.h>
|
||||||
|
#include <thread>
|
||||||
#include <cstddef>
|
#include <cstddef>
|
||||||
|
|
||||||
#include "../Solution.h"
|
#include "../../Solution.h"
|
||||||
#include "../FeedForward.h"
|
#include "../FeedForward.h"
|
||||||
#include "Supervised"
|
#include "Learning.h"
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* http://sydney.edu.au/engineering/it/~comp4302/ann4-3s.pdf
|
* http://sydney.edu.au/engineering/it/~comp4302/ann4-3s.pdf
|
||||||
@@ -22,22 +23,24 @@
|
|||||||
|
|
||||||
namespace Shin
|
namespace Shin
|
||||||
{
|
{
|
||||||
namespace NeuronNetwork
|
namespace NeuralNetwork
|
||||||
{
|
{
|
||||||
namespace Learning
|
namespace Learning
|
||||||
{
|
{
|
||||||
class BackPropagation : public Supervised
|
class BackPropagation : public Learning
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
BackPropagation(FeedForward &n);
|
BackPropagation(FeedForward &n): Learning(), network(n) {}
|
||||||
virtual ~BackPropagation();
|
virtual ~BackPropagation();
|
||||||
|
|
||||||
BackPropagation(const Shin::NeuronNetwork::Learning::BackPropagation&) =delete;
|
BackPropagation(const Shin::NeuralNetwork::Learning::BackPropagation&) =delete;
|
||||||
BackPropagation operator=(const Shin::NeuronNetwork::Learning::BackPropagation&) =delete;
|
BackPropagation operator=(const Shin::NeuralNetwork::Learning::BackPropagation&) =delete;
|
||||||
|
|
||||||
|
float teach(const Problem &p,const Solution &solution);
|
||||||
|
virtual void propagate(const Solution& expectation);
|
||||||
|
|
||||||
float teach(const Shin::NeuronNetwork::Problem &p,const Solution &solution);
|
|
||||||
virtual void propagate(const Shin::NeuronNetwork::Solution& expectation);
|
|
||||||
protected:
|
protected:
|
||||||
|
FeedForward &network;
|
||||||
inline virtual float correction(const float& expected, const float& computed) { return expected - computed;};
|
inline virtual float correction(const float& expected, const float& computed) { return expected - computed;};
|
||||||
|
|
||||||
float **deltas=nullptr;
|
float **deltas=nullptr;
|
||||||
21
src/NeuralNetwork/Learning/Learning.cpp
Normal file
21
src/NeuralNetwork/Learning/Learning.cpp
Normal file
@@ -0,0 +1,21 @@
|
|||||||
|
#include "Learning.h"
|
||||||
|
|
||||||
|
float Shin::NeuralNetwork::Learning::Learning::calculateError(const Shin::Solution& expectation, const Shin::Solution& solution)
|
||||||
|
{
|
||||||
|
register float a=0;
|
||||||
|
for (size_t i=0;i<expectation.size();i++)
|
||||||
|
{
|
||||||
|
a+=pow(expectation[i]-solution[i],2)/2;
|
||||||
|
}
|
||||||
|
return a;
|
||||||
|
}
|
||||||
|
|
||||||
|
float Shin::NeuralNetwork::Learning::Learning::teachSet(const std::vector<std::pair<Shin::Problem,Shin::Solution>> &set)
|
||||||
|
{
|
||||||
|
double error=0;
|
||||||
|
for (register size_t i=0;i<set.size();i++)
|
||||||
|
{
|
||||||
|
error+=teach(set[i].first,set[i].second);
|
||||||
|
}
|
||||||
|
return error;
|
||||||
|
}
|
||||||
@@ -1,30 +1,23 @@
|
|||||||
#ifndef _SUPERVISEDLEARNING_H_
|
#ifndef _S_NN_LEARNING_H_
|
||||||
#define _SUPERVIESDLERANING_H_
|
#define _S_NN_LEARNING_H_
|
||||||
|
|
||||||
#include <vector>
|
|
||||||
#include <set>
|
|
||||||
#include <cstddef>
|
#include <cstddef>
|
||||||
|
|
||||||
#include "../Solution.h"
|
#include "../../Solution.h"
|
||||||
#include "../FeedForward.h"
|
#include "../FeedForward.h"
|
||||||
|
|
||||||
namespace Shin
|
namespace Shin
|
||||||
{
|
{
|
||||||
namespace NeuronNetwork
|
namespace NeuralNetwork
|
||||||
{
|
{
|
||||||
namespace Learning
|
namespace Learning
|
||||||
{
|
{
|
||||||
const float LearningCoeficient=0.4;
|
const float LearningCoeficient=0.4;
|
||||||
class Supervised
|
class Learning
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
Supervised() =delete;
|
Learning() {};
|
||||||
Supervised(FeedForward &n) : network(n) {};
|
inline virtual ~Learning() {};
|
||||||
virtual ~Supervised() {};
|
|
||||||
|
|
||||||
float calculateError(const Solution &expectation,const Solution &solution);
|
|
||||||
virtual float teach(const Shin::NeuronNetwork::Problem &p,const Solution &solution)=0;
|
|
||||||
virtual float teachSet(const std::vector<std::pair<Problem,Solution>> &set) final;
|
|
||||||
|
|
||||||
inline virtual void setLearningCoeficient (const float& coef) { learningCoeficient=coef; };
|
inline virtual void setLearningCoeficient (const float& coef) { learningCoeficient=coef; };
|
||||||
|
|
||||||
@@ -35,9 +28,12 @@ namespace Learning
|
|||||||
inline virtual void disableNoise() final {noise=0;}
|
inline virtual void disableNoise() final {noise=0;}
|
||||||
inline virtual void setNoiseSize(const unsigned& milipercents) final { noiseSize=milipercents; }
|
inline virtual void setNoiseSize(const unsigned& milipercents) final { noiseSize=milipercents; }
|
||||||
|
|
||||||
|
float calculateError(const Solution &expectation,const Solution &solution);
|
||||||
|
virtual float teach(const Problem &p,const Solution &solution)=0;
|
||||||
|
virtual float teachSet(const std::vector<std::pair<Problem,Solution>> &set) final;
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
FeedForward &network;
|
float learningCoeficient=LearningCoeficient;
|
||||||
float learningCoeficient=Shin::NeuronNetwork::Learning::LearningCoeficient;
|
|
||||||
bool allowThreads=0;
|
bool allowThreads=0;
|
||||||
bool noise=0;
|
bool noise=0;
|
||||||
unsigned noiseSize=500;
|
unsigned noiseSize=500;
|
||||||
@@ -1,6 +1,6 @@
|
|||||||
#include "./OpticalBackPropagation"
|
#include "./OpticalBackPropagation"
|
||||||
|
|
||||||
float Shin::NeuronNetwork::Learning::OpticalBackPropagation::correction(const float& expected, const float& computed)
|
float Shin::NeuralNetwork::Learning::OpticalBackPropagation::correction(const float& expected, const float& computed)
|
||||||
{
|
{
|
||||||
register float tmp=(expected-computed);
|
register float tmp=(expected-computed);
|
||||||
register float ret=1+exp(tmp*tmp);
|
register float ret=1+exp(tmp*tmp);
|
||||||
@@ -10,7 +10,7 @@
|
|||||||
|
|
||||||
namespace Shin
|
namespace Shin
|
||||||
{
|
{
|
||||||
namespace NeuronNetwork
|
namespace NeuralNetwork
|
||||||
{
|
{
|
||||||
namespace Learning
|
namespace Learning
|
||||||
{
|
{
|
||||||
@@ -1,12 +1,10 @@
|
|||||||
OBJFILES=\
|
OBJFILES=\
|
||||||
FeedForward.o\
|
FeedForward.o\
|
||||||
Learning/Supervised.o Learning/BackPropagation.o Learning/OpticalBackPropagation.o\
|
Learning/Learning.o Learning/BackPropagation.o Learning/OpticalBackPropagation.o
|
||||||
Learning/Unsupervised.o Learning/Reinforcement.o Learning/RL/QFunction.o Learning/QLearning.o\
|
|
||||||
./IO.o
|
|
||||||
|
|
||||||
LINKFILES= ../sse_mathfun.o
|
LINKFILES= ../sse_mathfun.o
|
||||||
|
|
||||||
LIBNAME=NeuronNetwork
|
LIBNAME=NeuralNetwork
|
||||||
|
|
||||||
include ../../Makefile.const
|
include ../../Makefile.const
|
||||||
|
|
||||||
@@ -17,7 +15,7 @@ lib: $(LIBNAME).so $(LIBNAME).a
|
|||||||
$(LIBNAME).so: $(OBJFILES)
|
$(LIBNAME).so: $(OBJFILES)
|
||||||
$(CXX) -shared $(CXXFLAGS) $(OBJFILES) $(LINKFILES) -o $(LIBNAME).so
|
$(CXX) -shared $(CXXFLAGS) $(OBJFILES) $(LINKFILES) -o $(LIBNAME).so
|
||||||
|
|
||||||
$(LIBNAME).a: $(OBJFILES) ./Neuron.h ./Network.h ./Solution.h ./Problem.h
|
$(LIBNAME).a: $(OBJFILES) ./Neuron.h ./Network.h ../Solution.h ../Problem.h
|
||||||
rm -f $(LIBNAME).a # create new library
|
rm -f $(LIBNAME).a # create new library
|
||||||
ar rcv $(LIBNAME).a $(OBJFILES) $(LINKFILES)
|
ar rcv $(LIBNAME).a $(OBJFILES) $(LINKFILES)
|
||||||
ranlib $(LIBNAME).a
|
ranlib $(LIBNAME).a
|
||||||
@@ -1,26 +1,25 @@
|
|||||||
#ifndef _S_NN_NN_H_
|
#ifndef _S_NN_NN_H_
|
||||||
#define _S_NN_NN_H_
|
#define _S_NN_NN_H_
|
||||||
|
|
||||||
#include "Problem"
|
|
||||||
#include "Solution"
|
|
||||||
#include "Neuron"
|
|
||||||
|
|
||||||
#include <cstdarg>
|
#include <cstdarg>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <initializer_list>
|
#include <initializer_list>
|
||||||
|
|
||||||
#include <iostream>
|
#include "../Problem.h"
|
||||||
|
#include "../Solution.h"
|
||||||
|
#include "Neuron.h"
|
||||||
|
|
||||||
|
|
||||||
namespace Shin
|
namespace Shin
|
||||||
{
|
{
|
||||||
namespace NeuronNetwork
|
namespace NeuralNetwork
|
||||||
{
|
{
|
||||||
const float lambda=0.8;
|
const float lambda=0.8;
|
||||||
class Layer
|
class Layer
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
virtual ~Layer() {};
|
virtual ~Layer() {};
|
||||||
virtual Neuron& operator[](size_t neuron)=0;
|
virtual Neuron& operator[](const size_t& neuron)=0;
|
||||||
virtual size_t size() const=0;
|
virtual size_t size() const=0;
|
||||||
};
|
};
|
||||||
|
|
||||||
@@ -31,7 +30,7 @@ namespace NeuronNetwork
|
|||||||
virtual ~Network() {};
|
virtual ~Network() {};
|
||||||
|
|
||||||
virtual Solution solve(const Problem&)=0;
|
virtual Solution solve(const Problem&)=0;
|
||||||
virtual Layer& operator[](size_t layer)=0;
|
virtual Layer& operator[](const size_t &layer)=0;
|
||||||
inline float getLambda() const {return lambda;}
|
inline float getLambda() const {return lambda;}
|
||||||
|
|
||||||
inline virtual void setThreads(const unsigned&t) final {threads=t;}
|
inline virtual void setThreads(const unsigned&t) final {threads=t;}
|
||||||
@@ -5,7 +5,7 @@
|
|||||||
|
|
||||||
namespace Shin
|
namespace Shin
|
||||||
{
|
{
|
||||||
namespace NeuronNetwork
|
namespace NeuralNetwork
|
||||||
{
|
{
|
||||||
class Neuron
|
class Neuron
|
||||||
{
|
{
|
||||||
@@ -13,10 +13,10 @@ namespace NeuronNetwork
|
|||||||
Neuron() {};
|
Neuron() {};
|
||||||
virtual ~Neuron() {};
|
virtual ~Neuron() {};
|
||||||
virtual float getPotential() const =0;
|
virtual float getPotential() const =0;
|
||||||
virtual void setPotential(float p) =0;
|
virtual void setPotential(const float &p) =0;
|
||||||
|
|
||||||
virtual float getWeight(size_t) const =0;
|
virtual float getWeight(const size_t&) const =0;
|
||||||
virtual void setWeight(size_t i,float p) =0;
|
virtual void setWeight(const size_t& i,const float &p) =0;
|
||||||
|
|
||||||
virtual float output() const =0;
|
virtual float output() const =0;
|
||||||
virtual float input() const=0;
|
virtual float input() const=0;
|
||||||
@@ -1,38 +0,0 @@
|
|||||||
#include "./QLearning"
|
|
||||||
|
|
||||||
Shin::NeuronNetwork::Learning::QLearning::QLearning(size_t input, size_t size, size_t choices):fun()
|
|
||||||
{
|
|
||||||
fun.initialiseNetwork(input,size,choices);
|
|
||||||
}
|
|
||||||
|
|
||||||
Shin::NeuronNetwork::Learning::QLearning::~QLearning()
|
|
||||||
{
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
void Shin::NeuronNetwork::Learning::QLearning::learnDelayed(std::vector< std::pair< Shin::NeuronNetwork::Solution, Shin::NeuronNetwork::Problem > >& p, float quality)
|
|
||||||
{
|
|
||||||
fun.learnDelayed(p,quality);
|
|
||||||
}
|
|
||||||
|
|
||||||
void Shin::NeuronNetwork::Learning::QLearning::learnDelayed(std::vector< std::pair< Shin::NeuronNetwork::Problem,int > >& p, float quality)
|
|
||||||
{
|
|
||||||
fun.learnDelayed(p,quality);
|
|
||||||
}
|
|
||||||
|
|
||||||
void Shin::NeuronNetwork::Learning::QLearning::learn(Shin::NeuronNetwork::Solution& s, Shin::NeuronNetwork::Problem& p, float quality)
|
|
||||||
{
|
|
||||||
fun.learn(s,p,quality);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void Shin::NeuronNetwork::Learning::QLearning::learn(Shin::NeuronNetwork::Problem& s, int action, float quality)
|
|
||||||
{
|
|
||||||
fun.learn(s,action,quality);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
int Shin::NeuronNetwork::Learning::QLearning::getChoice(Shin::NeuronNetwork::Problem& p)
|
|
||||||
{
|
|
||||||
return fun.getChoice(p);
|
|
||||||
}
|
|
||||||
@@ -1,69 +0,0 @@
|
|||||||
#ifndef _QLEARNING_H_
|
|
||||||
#define _QLEARNING_H_
|
|
||||||
|
|
||||||
#include <cstddef>
|
|
||||||
#include <functional>
|
|
||||||
|
|
||||||
#include "BackPropagation.h"
|
|
||||||
#include "OpticalBackPropagation.h"
|
|
||||||
#include "../Problem.h"
|
|
||||||
#include "../FeedForward.h"
|
|
||||||
#include "Unsupervised.h"
|
|
||||||
#include "RL/QFunction.h"
|
|
||||||
|
|
||||||
/*
|
|
||||||
* http://www2.econ.iastate.edu/tesfatsi/RLUsersGuide.ICAC2005.pdf
|
|
||||||
* http://www.autonlab.org/tutorials/rl06.pdf
|
|
||||||
* http://www.nbu.bg/cogs/events/2000/Readings/Petrov/rltutorial.pdf
|
|
||||||
*
|
|
||||||
* http://www.applied-mathematics.net/qlearning/qlearning.html
|
|
||||||
* http://nn.cs.utexas.edu/downloads/papers/stanley.gecco02_1.pdf
|
|
||||||
*
|
|
||||||
* http://stackoverflow.com/questions/740389/good-implementations-of-reinforced-learning
|
|
||||||
*
|
|
||||||
* http://stackoverflow.com/questions/10722064/training-a-neural-network-with-reinforcement-learning
|
|
||||||
*
|
|
||||||
* http://remi.coulom.free.fr/Thesis/
|
|
||||||
* http://remi.coulom.free.fr/Publications/Thesis.pdf
|
|
||||||
*
|
|
||||||
* http://link.springer.com/article/10.1007/BF00992696
|
|
||||||
*
|
|
||||||
* http://scholar.google.cz/scholar?start=10&q=reinforcement+learning+feedforward&hl=en&as_sdt=0,5&as_vis=1
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
|
|
||||||
namespace Shin
|
|
||||||
{
|
|
||||||
namespace NeuronNetwork
|
|
||||||
{
|
|
||||||
namespace Learning
|
|
||||||
{
|
|
||||||
class QLearning
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
QLearning(size_t input, size_t size, size_t choices);
|
|
||||||
~QLearning();
|
|
||||||
|
|
||||||
QLearning(const QLearning&) =delete;
|
|
||||||
QLearning& operator=(const QLearning&) =delete;
|
|
||||||
|
|
||||||
void learnDelayed(std::vector<std::pair<Solution,Problem>> &p, float quality);
|
|
||||||
void learnDelayed(std::vector<std::pair<Problem,int>> &p, float quality);
|
|
||||||
void learn(Solution &s, Problem &p, float quality);
|
|
||||||
void learn(Problem &p,int action, float quality);
|
|
||||||
|
|
||||||
void learnNetwork(double maxError=0.01);
|
|
||||||
void learningCoeficient(double t);
|
|
||||||
|
|
||||||
void initialise(size_t input, size_t size,size_t choices);
|
|
||||||
int getChoice(Problem &p);
|
|
||||||
Solution getSolution(Problem &p) {return fun.getSolution(p);}
|
|
||||||
void setLearningCoeficient(double ok, double err) {fun.setLearningCoeficient(ok,err);};
|
|
||||||
void opticalBackPropagation() {fun.opticalBackPropagation();};
|
|
||||||
protected:
|
|
||||||
RL::QFunctionNetwork fun;
|
|
||||||
};
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
@@ -1 +0,0 @@
|
|||||||
./Supervised.h
|
|
||||||
@@ -1,20 +0,0 @@
|
|||||||
#include "./Supervised"
|
|
||||||
float Shin::NeuronNetwork::Learning::Supervised::calculateError(const Shin::NeuronNetwork::Solution& expectation, const Shin::NeuronNetwork::Solution& solution)
|
|
||||||
{
|
|
||||||
register float a=0;
|
|
||||||
for (size_t i=0;i<expectation.size();i++)
|
|
||||||
{
|
|
||||||
a+=pow(expectation[i]-solution[i],2)/2;
|
|
||||||
}
|
|
||||||
return a;
|
|
||||||
}
|
|
||||||
|
|
||||||
float Shin::NeuronNetwork::Learning::Supervised::teachSet(const std::vector<std::pair<Shin::NeuronNetwork::Problem,Shin::NeuronNetwork::Solution>> &set)
|
|
||||||
{
|
|
||||||
double error=0;
|
|
||||||
for (register size_t i=0;i<set.size();i++)
|
|
||||||
{
|
|
||||||
error+=teach(set[i].first,set[i].second);
|
|
||||||
}
|
|
||||||
return error;
|
|
||||||
}
|
|
||||||
@@ -1 +0,0 @@
|
|||||||
./Unsupervised.h
|
|
||||||
@@ -1 +0,0 @@
|
|||||||
#include "./Unsupervised"
|
|
||||||
@@ -1,29 +0,0 @@
|
|||||||
#ifndef _UNSUPERVISEDLEARNING_H_
|
|
||||||
#define _UNSUPERVISEDLEARNING_H_
|
|
||||||
|
|
||||||
#include <math.h>
|
|
||||||
#include <cstddef>
|
|
||||||
|
|
||||||
#include "../Solution.h"
|
|
||||||
#include "../FeedForward.h"
|
|
||||||
|
|
||||||
namespace Shin
|
|
||||||
{
|
|
||||||
namespace NeuronNetwork
|
|
||||||
{
|
|
||||||
namespace Learning
|
|
||||||
{
|
|
||||||
class Unsupervised
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
Unsupervised(FeedForward &n): network(n) {};
|
|
||||||
virtual ~Unsupervised() {};
|
|
||||||
|
|
||||||
Unsupervised() =delete;
|
|
||||||
protected:
|
|
||||||
FeedForward &network;
|
|
||||||
};
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
@@ -6,19 +6,16 @@
|
|||||||
#include "IO.h"
|
#include "IO.h"
|
||||||
|
|
||||||
namespace Shin
|
namespace Shin
|
||||||
{
|
|
||||||
namespace NeuronNetwork
|
|
||||||
{
|
{
|
||||||
class Problem : public IO
|
class Problem : public IO
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
Problem(): IO() {};
|
Problem(): IO() {};
|
||||||
Problem(std::vector<float> &p):IO(p) {};
|
Problem(const std::vector<float> &p):IO(p) {};
|
||||||
Problem(const std::initializer_list<float> &a) : IO(a) {};
|
Problem(const std::initializer_list<float> &a) : IO(a) {};
|
||||||
protected:
|
protected:
|
||||||
private:
|
private:
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
}
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
@@ -5,8 +5,6 @@
|
|||||||
#include "IO.h"
|
#include "IO.h"
|
||||||
|
|
||||||
namespace Shin
|
namespace Shin
|
||||||
{
|
|
||||||
namespace NeuronNetwork
|
|
||||||
{
|
{
|
||||||
class Solution : public IO
|
class Solution : public IO
|
||||||
{
|
{
|
||||||
@@ -19,7 +17,6 @@ namespace NeuronNetwork
|
|||||||
inline void push_back(const float &a) {data.push_back(a);};
|
inline void push_back(const float &a) {data.push_back(a);};
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
@@ -16,7 +16,7 @@ NN_TESTS= $(NN_TESTEABLE) nn-pong
|
|||||||
|
|
||||||
ALL_TESTS=$(NN_TESTEABLE) $(GEN_TESTS)
|
ALL_TESTS=$(NN_TESTEABLE) $(GEN_TESTS)
|
||||||
|
|
||||||
LIBS=$(LIB_DIR)/Genetics.a $(LIB_DIR)/NeuronNetwork.a
|
LIBS=$(LIB_DIR)/Genetics.a $(LIB_DIR)/NeuralNetwork.a
|
||||||
#LIBS=-lGenetics.so -lNeuronNetwork
|
#LIBS=-lGenetics.so -lNeuronNetwork
|
||||||
|
|
||||||
CXXFLAGS += -I$(LIB_DIR)
|
CXXFLAGS += -I$(LIB_DIR)
|
||||||
@@ -30,10 +30,10 @@ test: all
|
|||||||
@for i in $(ALL_TESTS); do echo -n ./$$i; echo -n " - "; ./$$i; echo ""; done
|
@for i in $(ALL_TESTS); do echo -n ./$$i; echo -n " - "; ./$$i; echo ""; done
|
||||||
|
|
||||||
g-%: g-%.cpp $(LIB_DIR)/Genetics.a
|
g-%: g-%.cpp $(LIB_DIR)/Genetics.a
|
||||||
$(CXX) $(CXXFLAGS) $(OPTIMALIZATION) -o $@ $< $ $(LIB_DIR)/Genetics.a $(LIB_DIR)/NeuronNetwork.a -lm
|
$(CXX) $(CXXFLAGS) $(OPTIMALIZATION) -o $@ $< $ $(LIB_DIR)/Genetics.a $(LIB_DIR)/NeuralNetwork.a -lm
|
||||||
|
|
||||||
nn-%: nn-%.cpp $(LIB_DIR)/NeuronNetwork.a
|
nn-%: nn-%.cpp $(LIB_DIR)/NeuralNetwork.a
|
||||||
$(CXX) $(CXXFLAGS) -o $@ $< $ $(LIB_DIR)/NeuronNetwork.a -lm
|
$(CXX) $(CXXFLAGS) -o $@ $< $ $(LIB_DIR)/NeuralNetwork.a -lm
|
||||||
|
|
||||||
nn-pong: ./nn-pong.cpp $(LIB_DIR)/NeuronNetwork.a
|
nn-pong: ./nn-pong.cpp $(LIB_DIR)/NeuronNetwork.a
|
||||||
$(CXX) $(CXXFLAGS) -o $@ $< $ $(LIB_DIR)/NeuronNetwork.a -lm -lalleg -lGL
|
$(CXX) $(CXXFLAGS) -o $@ $< $ $(LIB_DIR)/NeuronNetwork.a -lm -lalleg -lGL
|
||||||
|
|||||||
@@ -1,13 +1,12 @@
|
|||||||
#include "../src/NeuronNetwork/FeedForward"
|
#include "../src/NeuralNetwork/FeedForward"
|
||||||
#include "../src/NeuronNetwork/FeedForward"
|
#include "../src/NeuralNetwork/Learning/BackPropagation"
|
||||||
#include "../src/NeuronNetwork/Learning/BackPropagation"
|
|
||||||
|
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
//typedef Shin::NeuronNetwork::Problem X;
|
//typedef Shin::NeuronNetwork::Problem X;
|
||||||
|
|
||||||
class X: public Shin::NeuronNetwork::Problem
|
class X: public Shin::Problem
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
X(const X& a) :Problem(a) {}
|
X(const X& a) :Problem(a) {}
|
||||||
@@ -17,18 +16,18 @@ class X: public Shin::NeuronNetwork::Problem
|
|||||||
int main(int argc,char**)
|
int main(int argc,char**)
|
||||||
{
|
{
|
||||||
srand(time(NULL));
|
srand(time(NULL));
|
||||||
std::vector<Shin::NeuronNetwork::Solution> s;
|
std::vector<Shin::Solution> s;
|
||||||
std::vector<X> p;
|
std::vector<X> p;
|
||||||
|
|
||||||
//
|
//
|
||||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({1})));
|
s.push_back(Shin::Solution(std::vector<float>({1})));
|
||||||
p.push_back(X(std::vector<bool>({0})));
|
p.push_back(X(std::vector<bool>({0})));
|
||||||
|
|
||||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({0})));
|
s.push_back(Shin::Solution(std::vector<float>({0})));
|
||||||
p.push_back(X(std::vector<bool>({1})));
|
p.push_back(X(std::vector<bool>({1})));
|
||||||
|
|
||||||
Shin::NeuronNetwork::FeedForward q({1,5000,5000,15000,2});
|
Shin::NeuralNetwork::FeedForward q({1,5000,5000,15000,2});
|
||||||
Shin::NeuronNetwork::Learning::BackPropagation b(q);
|
Shin::NeuralNetwork::Learning::BackPropagation b(q);
|
||||||
if(argc > 1)
|
if(argc > 1)
|
||||||
{
|
{
|
||||||
std::cerr << "THREADING\n";
|
std::cerr << "THREADING\n";
|
||||||
|
|||||||
@@ -1,10 +1,9 @@
|
|||||||
|
|
||||||
#include "../src/NeuronNetwork/FeedForward"
|
#include "../src/NeuralNetwork/FeedForward"
|
||||||
#include "../src/NeuronNetwork/FeedForward.h"
|
|
||||||
|
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
|
|
||||||
class X: public Shin::NeuronNetwork::Problem
|
class X: public Shin::Problem
|
||||||
{
|
{
|
||||||
protected:
|
protected:
|
||||||
std::vector<float> representation() const
|
std::vector<float> representation() const
|
||||||
@@ -15,8 +14,8 @@ class X: public Shin::NeuronNetwork::Problem
|
|||||||
|
|
||||||
int main()
|
int main()
|
||||||
{
|
{
|
||||||
Shin::NeuronNetwork::FeedForward n({2,4,2});
|
Shin::NeuralNetwork::FeedForward n({2,4,2});
|
||||||
Shin::NeuronNetwork::FeedForward nq({2,4,2});
|
Shin::NeuralNetwork::FeedForward nq({2,4,2});
|
||||||
if(n[1].size() != 4)
|
if(n[1].size() != 4)
|
||||||
{
|
{
|
||||||
std::cout << "Actual size:" << n[0].size();
|
std::cout << "Actual size:" << n[0].size();
|
||||||
@@ -34,8 +33,8 @@ int main()
|
|||||||
std::cout << "Potential: " << n[2][0].getPotential() << "\n";
|
std::cout << "Potential: " << n[2][0].getPotential() << "\n";
|
||||||
std::cout << "Potential: " << nq[2][0].getPotential() << "\n";
|
std::cout << "Potential: " << nq[2][0].getPotential() << "\n";
|
||||||
|
|
||||||
Shin::NeuronNetwork::Solution s =n.solve(X());
|
Shin::Solution s =n.solve(X());
|
||||||
Shin::NeuronNetwork::Solution sq =nq.solve(X());
|
Shin::Solution sq =nq.solve(X());
|
||||||
|
|
||||||
if(s.size()!=2)
|
if(s.size()!=2)
|
||||||
{
|
{
|
||||||
|
|||||||
@@ -1,11 +1,10 @@
|
|||||||
#include "../src/NeuronNetwork/FeedForward"
|
#include "../src/NeuralNetwork/FeedForward"
|
||||||
#include "../src/NeuronNetwork/FeedForward"
|
#include "../src/NeuralNetwork/Learning/BackPropagation"
|
||||||
#include "../src/NeuronNetwork/Learning/BackPropagation"
|
|
||||||
|
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
class X: public Shin::NeuronNetwork::Problem
|
class X: public Shin::Problem
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
X(const X& a) :Problem(),q(a.q) {}
|
X(const X& a) :Problem(),q(a.q) {}
|
||||||
@@ -20,21 +19,21 @@ class X: public Shin::NeuronNetwork::Problem
|
|||||||
|
|
||||||
int main()
|
int main()
|
||||||
{
|
{
|
||||||
std::vector<Shin::NeuronNetwork::Solution> s;
|
std::vector<Shin::Solution> s;
|
||||||
std::vector<X> p;
|
std::vector<X> p;
|
||||||
|
|
||||||
//
|
//
|
||||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({0})));
|
s.push_back(Shin::Solution(std::vector<float>({0})));
|
||||||
p.push_back(X(std::vector<float>({1,0})));
|
p.push_back(X(std::vector<float>({1,0})));
|
||||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({0})));
|
s.push_back(Shin::Solution(std::vector<float>({0})));
|
||||||
p.push_back(X(std::vector<float>({0,1})));
|
p.push_back(X(std::vector<float>({0,1})));
|
||||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({0})));
|
s.push_back(Shin::Solution(std::vector<float>({0})));
|
||||||
p.push_back(X(std::vector<float>({0,0})));
|
p.push_back(X(std::vector<float>({0,0})));
|
||||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({1})));
|
s.push_back(Shin::Solution(std::vector<float>({1})));
|
||||||
p.push_back(X(std::vector<float>({1,1})));
|
p.push_back(X(std::vector<float>({1,1})));
|
||||||
|
|
||||||
Shin::NeuronNetwork::FeedForward q({2,4,1});
|
Shin::NeuralNetwork::FeedForward q({2,4,1});
|
||||||
Shin::NeuronNetwork::Learning::BackPropagation b(q);
|
Shin::NeuralNetwork::Learning::BackPropagation b(q);
|
||||||
b.setLearningCoeficient(10);
|
b.setLearningCoeficient(10);
|
||||||
|
|
||||||
for(int i=0;i<4;i++)
|
for(int i=0;i<4;i++)
|
||||||
|
|||||||
@@ -1,7 +1,7 @@
|
|||||||
#include "../src/NeuronNetwork/FeedForward"
|
#include "../src/NeuralNetwork/FeedForward"
|
||||||
|
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
class X: public Shin::NeuronNetwork::Problem
|
class X: public Shin::Problem
|
||||||
{
|
{
|
||||||
public: X(bool x,bool y):Problem() {data.push_back(x);data.push_back(y);}
|
public: X(bool x,bool y):Problem() {data.push_back(x);data.push_back(y);}
|
||||||
};
|
};
|
||||||
@@ -10,7 +10,7 @@ int main()
|
|||||||
{
|
{
|
||||||
srand(time(NULL));
|
srand(time(NULL));
|
||||||
int lm=5;
|
int lm=5;
|
||||||
Shin::NeuronNetwork::FeedForward net({2,lm,1});
|
Shin::NeuralNetwork::FeedForward net({2,lm,1});
|
||||||
bool x=1;
|
bool x=1;
|
||||||
int prev_err=0;
|
int prev_err=0;
|
||||||
int err=0;
|
int err=0;
|
||||||
@@ -47,7 +47,7 @@ int main()
|
|||||||
{
|
{
|
||||||
bool x= rand()%2;
|
bool x= rand()%2;
|
||||||
bool y=rand()%2;
|
bool y=rand()%2;
|
||||||
Shin::NeuronNetwork::Solution s =net.solve(X(x,y));
|
Shin::Solution s =net.solve(X(x,y));
|
||||||
if(s[0]!= (x xor y))
|
if(s[0]!= (x xor y))
|
||||||
err++;
|
err++;
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,38 +1,31 @@
|
|||||||
#include "../src/NeuronNetwork/FeedForward"
|
#include "../src/NeuralNetwork/FeedForward"
|
||||||
#include "../src/NeuronNetwork/FeedForward"
|
#include "../src/NeuralNetwork/Learning/BackPropagation"
|
||||||
#include "../src/NeuronNetwork/Learning/BackPropagation"
|
|
||||||
|
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
class X: public Shin::NeuronNetwork::Problem
|
class X: public Shin::Problem
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
X(const X& a) :q(a.q) {}
|
X(const X& a) :Problem(a.data) {}
|
||||||
X(const std::vector<float> &a):q(a) {}
|
X(const std::vector<float> &a):Problem(a) {}
|
||||||
std::vector<float> representation() const
|
|
||||||
{
|
|
||||||
return q;
|
|
||||||
}
|
|
||||||
protected:
|
|
||||||
std::vector<float> q;
|
|
||||||
};
|
};
|
||||||
|
|
||||||
int main(int argc, char**)
|
int main(int argc, char**)
|
||||||
{
|
{
|
||||||
srand(time(NULL));
|
srand(time(NULL));
|
||||||
std::vector<Shin::NeuronNetwork::Solution> s;
|
std::vector<Shin::Solution> s;
|
||||||
std::vector<X> p;
|
std::vector<X> p;
|
||||||
|
|
||||||
//
|
//
|
||||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({1})));
|
s.push_back(Shin::Solution(std::vector<float>({1})));
|
||||||
p.push_back(X(std::vector<float>({0})));
|
p.push_back(X(std::vector<float>({0})));
|
||||||
|
|
||||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({0})));
|
s.push_back(Shin::Solution(std::vector<float>({0})));
|
||||||
p.push_back(X(std::vector<float>({1})));
|
p.push_back(X(std::vector<float>({1})));
|
||||||
|
|
||||||
Shin::NeuronNetwork::FeedForward q({1,5000,5000,5000,1});
|
Shin::NeuralNetwork::FeedForward q({1,5000,5000,5000,1});
|
||||||
Shin::NeuronNetwork::Learning::BackPropagation b(q);
|
Shin::NeuralNetwork::Learning::BackPropagation b(q);
|
||||||
|
|
||||||
if(argc >1)
|
if(argc >1)
|
||||||
{
|
{
|
||||||
@@ -42,6 +35,6 @@ int main(int argc, char**)
|
|||||||
for(int i=0;i<2;i++)
|
for(int i=0;i<2;i++)
|
||||||
{
|
{
|
||||||
b.teach(p[i%2],s[i%2]);
|
b.teach(p[i%2],s[i%2]);
|
||||||
std::cerr << i%2 <<". FOR: [" << p[i%2].representation()[0] << "] res: " << q.solve(p[i%2])[0] << " should be " << s[i%2][0]<<"\n";
|
std::cerr << i%2 <<". FOR: [" << p[i%2][0] << "] res: " << q.solve(p[i%2])[0] << " should be " << s[i%2][0]<<"\n";
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -1,10 +1,10 @@
|
|||||||
#include "../src/NeuronNetwork/FeedForward"
|
#include "../src/NeuralNetwork/FeedForward"
|
||||||
#include "../src/NeuronNetwork/Learning/BackPropagation"
|
#include "../src/NeuralNetwork/Learning/BackPropagation"
|
||||||
|
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
class X: public Shin::NeuronNetwork::Problem
|
class X: public Shin::Problem
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
X(const X& a) :Problem(a) {}
|
X(const X& a) :Problem(a) {}
|
||||||
@@ -17,14 +17,14 @@ int main()
|
|||||||
|
|
||||||
for (int test=0;test<2;test++)
|
for (int test=0;test<2;test++)
|
||||||
{
|
{
|
||||||
Shin::NeuronNetwork::FeedForward q({2,3,1});
|
Shin::NeuralNetwork::FeedForward q({2,3,1});
|
||||||
Shin::NeuronNetwork::Learning::BackPropagation b(q);
|
Shin::NeuralNetwork::Learning::BackPropagation b(q);
|
||||||
|
|
||||||
std::vector<std::pair<Shin::NeuronNetwork::Problem, Shin::NeuronNetwork::Solution> > set;
|
std::vector<std::pair<Shin::Problem, Shin::Solution> > set;
|
||||||
set.push_back(std::pair<Shin::NeuronNetwork::Problem, Shin::NeuronNetwork::Solution>(Shin::NeuronNetwork::Problem({0,0}),Shin::NeuronNetwork::Solution({0})));
|
set.push_back(std::pair<Shin::Problem, Shin::Solution>(Shin::Problem({0,0}),Shin::Solution({0})));
|
||||||
set.push_back(std::pair<Shin::NeuronNetwork::Problem, Shin::NeuronNetwork::Solution>(Shin::NeuronNetwork::Problem({1,0}),Shin::NeuronNetwork::Solution({1})));
|
set.push_back(std::pair<Shin::Problem, Shin::Solution>(Shin::Problem({1,0}),Shin::Solution({1})));
|
||||||
set.push_back(std::pair<Shin::NeuronNetwork::Problem, Shin::NeuronNetwork::Solution>(Shin::NeuronNetwork::Problem({1,1}),Shin::NeuronNetwork::Solution({0})));
|
set.push_back(std::pair<Shin::Problem, Shin::Solution>(Shin::Problem({1,1}),Shin::Solution({0})));
|
||||||
set.push_back(std::pair<Shin::NeuronNetwork::Problem, Shin::NeuronNetwork::Solution>(Shin::NeuronNetwork::Problem({0,1}),Shin::NeuronNetwork::Solution({1})));
|
set.push_back(std::pair<Shin::Problem, Shin::Solution>(Shin::Problem({0,1}),Shin::Solution({1})));
|
||||||
if(test)
|
if(test)
|
||||||
{
|
{
|
||||||
std::cerr << "Testing with entropy\n";
|
std::cerr << "Testing with entropy\n";
|
||||||
|
|||||||
@@ -1,10 +1,10 @@
|
|||||||
#include "../src/NeuronNetwork/FeedForward"
|
#include "../src/NeuralNetwork/FeedForward"
|
||||||
#include "../src/NeuronNetwork/Learning/OpticalBackPropagation"
|
#include "../src/NeuralNetwork/Learning/OpticalBackPropagation"
|
||||||
|
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
class X: public Shin::NeuronNetwork::Problem
|
class X: public Shin::Problem
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
X(const X& a) :Problem(a) {}
|
X(const X& a) :Problem(a) {}
|
||||||
@@ -16,15 +16,15 @@ int main()
|
|||||||
srand(time(NULL));
|
srand(time(NULL));
|
||||||
for (int test=0;test<2;test++)
|
for (int test=0;test<2;test++)
|
||||||
{
|
{
|
||||||
Shin::NeuronNetwork::FeedForward q({2,40,1});
|
Shin::NeuralNetwork::FeedForward q({2,40,1});
|
||||||
Shin::NeuronNetwork::Learning::OpticalBackPropagation b(q);
|
Shin::NeuralNetwork::Learning::OpticalBackPropagation b(q);
|
||||||
b.setLearningCoeficient(0.1);
|
b.setLearningCoeficient(0.1);
|
||||||
|
|
||||||
std::vector<std::pair<Shin::NeuronNetwork::Problem, Shin::NeuronNetwork::Solution> > set;
|
std::vector<std::pair<Shin::Problem, Shin::Solution> > set;
|
||||||
set.push_back(std::pair<Shin::NeuronNetwork::Problem, Shin::NeuronNetwork::Solution>(Shin::NeuronNetwork::Problem({0,0}),Shin::NeuronNetwork::Solution({0})));
|
set.push_back(std::pair<Shin::Problem, Shin::Solution>(Shin::Problem({0,0}),Shin::Solution({0})));
|
||||||
set.push_back(std::pair<Shin::NeuronNetwork::Problem, Shin::NeuronNetwork::Solution>(Shin::NeuronNetwork::Problem({1,0}),Shin::NeuronNetwork::Solution({1})));
|
set.push_back(std::pair<Shin::Problem, Shin::Solution>(Shin::Problem({1,0}),Shin::Solution({1})));
|
||||||
set.push_back(std::pair<Shin::NeuronNetwork::Problem, Shin::NeuronNetwork::Solution>(Shin::NeuronNetwork::Problem({1,1}),Shin::NeuronNetwork::Solution({0})));
|
set.push_back(std::pair<Shin::Problem, Shin::Solution>(Shin::Problem({1,1}),Shin::Solution({0})));
|
||||||
set.push_back(std::pair<Shin::NeuronNetwork::Problem, Shin::NeuronNetwork::Solution>(Shin::NeuronNetwork::Problem({0,1}),Shin::NeuronNetwork::Solution({1})));
|
set.push_back(std::pair<Shin::Problem, Shin::Solution>(Shin::Problem({0,1}),Shin::Solution({1})));
|
||||||
if(test)
|
if(test)
|
||||||
{
|
{
|
||||||
std::cerr << "Testing with entropy\n";
|
std::cerr << "Testing with entropy\n";
|
||||||
|
|||||||
@@ -1,13 +1,12 @@
|
|||||||
#include "../src/NeuronNetwork/FeedForward"
|
#include "../src/NeuralNetwork/FeedForward"
|
||||||
#include "../src/NeuronNetwork/FeedForward"
|
#include "../src/NeuralNetwork/Learning/BackPropagation"
|
||||||
#include "../src/NeuronNetwork/Learning/BackPropagation"
|
|
||||||
|
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
//typedef Shin::NeuronNetwork::Problem X;
|
//typedef Shin::NeuronNetwork::Problem X;
|
||||||
|
|
||||||
class X: public Shin::NeuronNetwork::Problem
|
class X: public Shin::Problem
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
X(const X& a) :Problem(a) {}
|
X(const X& a) :Problem(a) {}
|
||||||
@@ -17,21 +16,21 @@ class X: public Shin::NeuronNetwork::Problem
|
|||||||
int main(int argc,char**)
|
int main(int argc,char**)
|
||||||
{
|
{
|
||||||
srand(time(NULL));
|
srand(time(NULL));
|
||||||
std::vector<Shin::NeuronNetwork::Solution> s;
|
std::vector<Shin::Solution> s;
|
||||||
std::vector<X> p;
|
std::vector<X> p;
|
||||||
|
|
||||||
p.push_back(X(std::vector<float>({0,0})));
|
p.push_back(X(std::vector<float>({0,0})));
|
||||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({0.4,0.3,0.2,0.1})));
|
s.push_back(Shin::Solution(std::vector<float>({0.4,0.3,0.2,0.1})));
|
||||||
p.push_back(X(std::vector<float>({0,0.5})));
|
p.push_back(X(std::vector<float>({0,0.5})));
|
||||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({0.6,0.3,0.2,0.5})));
|
s.push_back(Shin::Solution(std::vector<float>({0.6,0.3,0.2,0.5})));
|
||||||
p.push_back(X(std::vector<float>({0.4,0.5})));
|
p.push_back(X(std::vector<float>({0.4,0.5})));
|
||||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<float>({0.4,0.4,0.2,0.8})));
|
s.push_back(Shin::Solution(std::vector<float>({0.4,0.4,0.2,0.8})));
|
||||||
Shin::NeuronNetwork::FeedForward q({2,4,4,4},1.0);
|
Shin::NeuralNetwork::FeedForward q({2,4,4,4},1.0);
|
||||||
Shin::NeuronNetwork::Learning::BackPropagation bp(q);
|
Shin::NeuralNetwork::Learning::BackPropagation bp(q);
|
||||||
bp.setLearningCoeficient(0.2);
|
bp.setLearningCoeficient(0.2);
|
||||||
for(int i=0;i<3;i++)
|
for(int i=0;i<3;i++)
|
||||||
{
|
{
|
||||||
Shin::NeuronNetwork::Solution sp =q.solve(p[i]);
|
Shin::Solution sp =q.solve(p[i]);
|
||||||
std::cerr << sp[0] << "," << sp[1] << "," << sp[2] << "," << sp[3] << "\n";
|
std::cerr << sp[0] << "," << sp[1] << "," << sp[2] << "," << sp[3] << "\n";
|
||||||
}
|
}
|
||||||
for(int i=0;i<4;i++)
|
for(int i=0;i<4;i++)
|
||||||
@@ -44,7 +43,7 @@ int main(int argc,char**)
|
|||||||
std::cerr << "XXXXXXXXXXXX\n";
|
std::cerr << "XXXXXXXXXXXX\n";
|
||||||
for(int i=0;i<3;i++)
|
for(int i=0;i<3;i++)
|
||||||
{
|
{
|
||||||
Shin::NeuronNetwork::Solution sp =q.solve(p[i]);
|
Shin::Solution sp =q.solve(p[i]);
|
||||||
std::cerr << sp[0] << "," << sp[1] << "," << sp[2] << "," << sp[3] << "\n";
|
std::cerr << sp[0] << "," << sp[1] << "," << sp[2] << "," << sp[3] << "\n";
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
Reference in New Issue
Block a user