modified SSE code building
This commit is contained in:
@@ -18,7 +18,7 @@ namespace ActivationFunction {
|
||||
* @brief Returns derivation of output, it is slower than version with output as it needs to compute output
|
||||
* @param input is input of function
|
||||
*/
|
||||
inline float derivatedOutput(const float &input) {
|
||||
inline float derivatedOutput(const float &input) const {
|
||||
return derivatedOutput(input,operator()(input));
|
||||
};
|
||||
|
||||
@@ -28,13 +28,13 @@ namespace ActivationFunction {
|
||||
* @param output is output of function
|
||||
* @see derivatedOutput
|
||||
*/
|
||||
virtual float derivatedOutput(const float &input, const float &output) =0;
|
||||
virtual float derivatedOutput(const float &input, const float &output) const=0;
|
||||
|
||||
/**
|
||||
* @brief Returns value of output
|
||||
* @param x is input of function
|
||||
*/
|
||||
virtual float operator()(const float &x)=0;
|
||||
virtual float operator()(const float &x) const=0;
|
||||
|
||||
/**
|
||||
* @brief Function returns clone of object
|
||||
|
||||
@@ -9,8 +9,8 @@ namespace ActivationFunction {
|
||||
public:
|
||||
Heaviside(const float &lambdaP=1.0): lambda(lambdaP) {}
|
||||
|
||||
inline virtual float derivatedOutput(const float &,const float &) override { return 1.0; }
|
||||
inline virtual float operator()(const float &x) override { return x>lambda ? 1.0f : 0.0f; };
|
||||
inline virtual float derivatedOutput(const float &,const float &) const override { return 1.0; }
|
||||
inline virtual float operator()(const float &x) const override { return x>lambda ? 1.0f : 0.0f; };
|
||||
|
||||
virtual ActivationFunction* clone() const override {
|
||||
return new Heaviside(lambda);
|
||||
|
||||
@@ -11,9 +11,9 @@ namespace ActivationFunction {
|
||||
public:
|
||||
HyperbolicTangent(const float& lam=1):lambda(lam) {}
|
||||
|
||||
inline virtual float derivatedOutput(const float &,const float &output) override { return lambda*(1-output*output); }
|
||||
inline virtual float derivatedOutput(const float &,const float &output) const override { return lambda*(1-output*output); }
|
||||
|
||||
inline virtual float operator()(const float &x) override { return tanh(lambda*x); };
|
||||
inline virtual float operator()(const float &x) const override { return tanh(lambda*x); };
|
||||
virtual ActivationFunction* clone() const override {
|
||||
return new HyperbolicTangent(lambda);
|
||||
}
|
||||
|
||||
@@ -9,9 +9,9 @@ namespace ActivationFunction {
|
||||
public:
|
||||
Linear(const float &lambdaP=1.0): lambda(lambdaP) {}
|
||||
|
||||
inline virtual float derivatedOutput(const float &,const float &) override { return lambda; }
|
||||
inline virtual float derivatedOutput(const float &,const float &) const override { return lambda; }
|
||||
|
||||
inline virtual float operator()(const float &x) override { return x*lambda; };
|
||||
inline virtual float operator()(const float &x) const override { return x*lambda; };
|
||||
|
||||
virtual ActivationFunction* clone() const override {
|
||||
return new Linear(lambda);
|
||||
|
||||
@@ -16,10 +16,11 @@ namespace ActivationFunction {
|
||||
public:
|
||||
Sigmoid(const float lambdaP = -0.5): lambda(lambdaP) {}
|
||||
|
||||
inline virtual float derivatedOutput(const float &, const float &output) override { return -lambda*output*(1.0f-output); }
|
||||
inline virtual float derivatedOutput(const float &, const float &output) const override { return -lambda*output*(1.0f-output); }
|
||||
|
||||
inline virtual float operator()(const float &x) override { return 1.0f / (1.0f +exp(lambda*x) ); };
|
||||
inline virtual __m128 operator()(const __m128 &x) override {
|
||||
inline virtual float operator()(const float &x) const override { return 1.0f / (1.0f +exp(lambda*x) ); };
|
||||
|
||||
inline virtual __m128 operator()(const __m128 &x) const override {
|
||||
// exp_ps is extremly slow!
|
||||
return _mm_div_ps(_mm_set1_ps(1.0),_mm_add_ps(exp_ps(_mm_mul_ps(_mm_set1_ps(lambda),x)),_mm_set1_ps(1.0)));
|
||||
}
|
||||
|
||||
@@ -14,13 +14,13 @@ namespace ActivationFunction {
|
||||
class StreamingActivationFunction : public ActivationFunction {
|
||||
public:
|
||||
|
||||
virtual float operator()(const float &x)=0;
|
||||
virtual float operator()(const float &x) const=0;
|
||||
|
||||
/**
|
||||
* @brief Returns value of four outputs
|
||||
* @param x is float[4], in every array value can be stored
|
||||
*/
|
||||
virtual __m128 operator()(const __m128 &x)=0;
|
||||
virtual __m128 operator()(const __m128 &x) const=0;
|
||||
};
|
||||
}
|
||||
}
|
||||
@@ -17,7 +17,9 @@ namespace BasisFunction {
|
||||
public:
|
||||
Linear() {}
|
||||
|
||||
inline virtual float computeStreaming(const std::vector<float>& weights, const std::vector<float>& input) const override {
|
||||
inline virtual float operator()(const std::vector<float>& weights, const std::vector<float>& input) const override {
|
||||
|
||||
#ifdef USE_SSE
|
||||
size_t inputSize=input.size();
|
||||
size_t alignedPrev=inputSize-inputSize%4;
|
||||
|
||||
@@ -42,17 +44,16 @@ namespace BasisFunction {
|
||||
partialSolution.sse = _mm_hadd_ps(partialSolution.sse, partialSolution.sse);
|
||||
partialSolution.sse = _mm_hadd_ps(partialSolution.sse, partialSolution.sse);
|
||||
#endif
|
||||
|
||||
return partialSolution.f[0];
|
||||
}
|
||||
#else
|
||||
|
||||
inline virtual float compute(const std::vector<float>& weights, const std::vector<float>& input) const override {
|
||||
register float tmp = 0;
|
||||
size_t inputSize=input.size();
|
||||
for(size_t k=0;k<inputSize;k++) {
|
||||
tmp+=input[k]*weights[k];
|
||||
}
|
||||
return tmp;
|
||||
#endif
|
||||
}
|
||||
|
||||
virtual BasisFunction* clone() const override {
|
||||
|
||||
@@ -13,13 +13,7 @@ namespace BasisFunction {
|
||||
float f[4];
|
||||
};
|
||||
|
||||
virtual float operator()(const std::vector<float>& weights, const std::vector<float>& input) const override {
|
||||
return computeStreaming(weights,input);
|
||||
}
|
||||
|
||||
virtual float computeStreaming(const std::vector<float>& weights, const std::vector<float>& input) const =0;
|
||||
|
||||
virtual float compute(const std::vector<float>& weights, const std::vector<float>& input) const =0;
|
||||
virtual float operator()(const std::vector<float>& weights, const std::vector<float>& input) const =0;
|
||||
};
|
||||
}
|
||||
}
|
||||
@@ -8,13 +8,11 @@
|
||||
int main() {
|
||||
{
|
||||
NeuralNetwork::BasisFunction::Linear l;
|
||||
assert(39.0==l.compute({1,2,3,5},{1,2,3,5}));
|
||||
assert(39.0==l.computeStreaming({1,2,3,5},{1,2,3,5}));
|
||||
assert(39.0==l({1,2,3,5},{1,2,3,5}));
|
||||
}
|
||||
{
|
||||
NeuralNetwork::BasisFunction::Linear l;
|
||||
assert(88.0==l.computeStreaming({1,2,3,5,7},{1,2,3,5,7}));
|
||||
assert(88.0==l.compute({1,2,3,5,7},{1,2,3,5,7}));
|
||||
assert(88.0==l({1,2,3,5,7},{1,2,3,5,7}));
|
||||
}
|
||||
{
|
||||
NeuralNetwork::BasisFunction::Linear l;
|
||||
@@ -22,8 +20,7 @@ int main() {
|
||||
for(int in=0;in<100;in++) {
|
||||
w.push_back(2);
|
||||
}
|
||||
assert(400.0==l.computeStreaming(w,w));
|
||||
assert(400.0==l.compute(w,w));
|
||||
assert(400.0==l(w,w));
|
||||
}
|
||||
{
|
||||
NeuralNetwork::BasisFunction::Linear l;
|
||||
@@ -31,8 +28,7 @@ int main() {
|
||||
for(int in=0;in<55;in++) {
|
||||
w.push_back(2);
|
||||
}
|
||||
assert(220.0==l.computeStreaming(w,w));
|
||||
assert(220.0==l.compute(w,w));
|
||||
assert(220.0==l(w,w));
|
||||
}
|
||||
{
|
||||
NeuralNetwork::BasisFunction::Product l;
|
||||
|
||||
@@ -3,13 +3,6 @@
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
void printVec(const std::vector<float> &v) {
|
||||
for(int i=0;i<v.size();i++) {
|
||||
std::cout << v[i] << ", ";
|
||||
}
|
||||
std::cout<< "\n";
|
||||
}
|
||||
|
||||
int main() {
|
||||
{ // XOR problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
|
||||
Reference in New Issue
Block a user