119 lines
3.1 KiB
C++
119 lines
3.1 KiB
C++
#pragma once
|
|
|
|
#include "../Network.h"
|
|
|
|
#include <vector>
|
|
|
|
#include <sstream>
|
|
#include <iomanip>
|
|
#include <limits>
|
|
|
|
namespace NeuralNetwork {
|
|
namespace Recurrent {
|
|
|
|
/**
|
|
* @author Tomas Cernik (Tom.Cernik@gmail.com)
|
|
* @brief Reccurent model of Artifical neural network
|
|
*/
|
|
class Network: public NeuralNetwork::Network {
|
|
public:
|
|
|
|
/**
|
|
* @brief Constructor for Network
|
|
* @param _inputSize is number of inputs to network
|
|
* @param _outputSize is size of output from network
|
|
* @param hiddenUnits is number of hiddenUnits to be created
|
|
*/
|
|
inline Network(size_t inputSize, size_t outputSize,size_t hiddenUnits=0):NeuralNetwork::Network(inputSize,outputSize), neurons(0),outputs(0) {
|
|
neurons.push_back(new NeuralNetwork::BiasNeuron());
|
|
|
|
for(size_t i=0;i<inputSize;i++) {
|
|
neurons.push_back(new NeuralNetwork::InputNeuron(neurons.size()));
|
|
}
|
|
|
|
for(size_t i=0;i<outputSize;i++) {
|
|
addNeuron();
|
|
}
|
|
|
|
for(size_t i=0;i<hiddenUnits;i++) {
|
|
addNeuron();
|
|
}
|
|
};
|
|
|
|
Network(const Network &r) : NeuralNetwork::Network(r), neurons(0), outputs(r.outputs) {
|
|
neurons.push_back(new NeuralNetwork::BiasNeuron());
|
|
for(std::size_t i=1;i<r.neurons.size();i++) {
|
|
neurons.push_back(r.neurons[i]->clone());
|
|
}
|
|
}
|
|
|
|
Network& operator=(const Network&r);
|
|
|
|
/**
|
|
* @brief Virtual destructor for Network
|
|
*/
|
|
virtual ~Network() {
|
|
for(auto& a:neurons) {
|
|
delete a;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* @brief This is a function to compute one iterations of network
|
|
* @param input is input of network
|
|
* @returns output of network
|
|
*/
|
|
inline virtual std::vector<float> computeOutput(const std::vector<float>& input) override {
|
|
return computeOutput(input,1);
|
|
}
|
|
|
|
/**
|
|
* @brief This is a function to compute iterations of network
|
|
* @param input is input of network
|
|
* @param iterations is number of iterations
|
|
* @returns output of network
|
|
*/
|
|
std::vector<float> computeOutput(const std::vector<float>& input, unsigned int iterations);
|
|
|
|
std::vector<NeuronInterface*>& getNeurons () {
|
|
return neurons;
|
|
}
|
|
|
|
virtual SimpleJSON::Type::Object serialize() const override;
|
|
|
|
NeuronInterface& addNeuron() {
|
|
neurons.push_back(new Neuron(neurons.size()));
|
|
NeuronInterface *newNeuron=neurons.back();
|
|
for(std::size_t i=0;i<neurons.size();i++) {
|
|
neurons[i]->setInputSize(newNeuron->id+1);
|
|
}
|
|
return *newNeuron;
|
|
}
|
|
|
|
/**
|
|
* @brief creates new network from joining two
|
|
* @param r is network that is connected to outputs of this network
|
|
* @returns network of constructed from two networks
|
|
*/
|
|
NeuralNetwork::Recurrent::Network connectWith(const NeuralNetwork::Recurrent::Network &r) const;
|
|
|
|
static std::unique_ptr<Network> deserialize(const SimpleJSON::Type::Object&);
|
|
|
|
std::size_t size() const {
|
|
return neurons.size();
|
|
};
|
|
|
|
NeuronInterface& operator[](std::size_t index) {
|
|
return *neurons[index];
|
|
}
|
|
|
|
typedef SimpleJSON::Factory<Network> Factory;
|
|
protected:
|
|
|
|
std::vector<NeuronInterface*> neurons;
|
|
std::vector<float> outputs;
|
|
|
|
SIMPLEJSON_REGISTER(NeuralNetwork::Recurrent::Network::Factory,NeuralNetwork::Recurrent::Network, deserialize)
|
|
};
|
|
}
|
|
} |