Files
NeuralNetworkLib/include/NeuralNetwork/Recurrent/Network.h

113 lines
3.1 KiB
C++

#pragma once
#include "../Network.h"
#include <vector>
#include <sstream>
#include <iomanip>
#include <limits>
namespace NeuralNetwork {
namespace Recurrent {
/**
* @author Tomas Cernik (Tom.Cernik@gmail.com)
* @brief Reccurent model of Artifical neural network
*/
class Network: public NeuralNetwork::Network {
public:
/**
* @brief Constructor for Network
* @param _inputSize is number of inputs to network
* @param _outputSize is size of output from network
* @param hiddenUnits is number of hiddenUnits to be created
*/
inline Network(size_t _inputSize, size_t _outputSize,size_t hiddenUnits=0):NeuralNetwork::Network(),inputSize(_inputSize),outputSize(_outputSize), neurons(0),outputs(0) {
neurons.push_back(new NeuralNetwork::BiasNeuron());
for(size_t i=0;i<_inputSize;i++) {
neurons.push_back(new NeuralNetwork::InputNeuron(neurons.size()));
}
for(size_t i=0;i<_outputSize;i++) {
addNeuron();
}
for(size_t i=0;i<hiddenUnits;i++) {
addNeuron();
}
};
Network(const Network &r) :inputSize(r.inputSize), outputSize(r.outputSize), neurons(0), outputs(r.outputs) {
neurons.push_back(new NeuralNetwork::BiasNeuron());
for(std::size_t i=1;i<r.neurons.size();i++) {
neurons.push_back(r.neurons[i]->clone());
}
}
Network& operator=(const Network&r);
/**
* @brief Virtual destructor for Network
*/
virtual ~Network() {
for(auto& a:neurons) {
delete a;
}
};
/**
* @brief This is a function to compute one iterations of network
* @param input is input of network
* @returns output of network
*/
inline virtual std::vector<float> computeOutput(const std::vector<float>& input) override {
return computeOutput(input,1);
}
/**
* @brief This is a function to compute iterations of network
* @param input is input of network
* @param iterations is number of iterations
* @returns output of network
*/
std::vector<float> computeOutput(const std::vector<float>& input, unsigned int iterations);
std::vector<NeuronInterface*>& getNeurons () {
return neurons;
}
virtual SimpleJSON::Type::Object serialize() const override;
NeuronInterface& addNeuron() {
neurons.push_back(new Neuron(neurons.size()));
NeuronInterface *newNeuron=neurons.back();
for(std::size_t i=0;i<neurons.size();i++) {
neurons[i]->setInputSize(newNeuron->id+1);
}
return *newNeuron;
}
/**
* @brief creates new network from joining two
* @param r is network that is connected to outputs of this network
* @returns network of constructed from two networks
*/
NeuralNetwork::Recurrent::Network connectWith(const NeuralNetwork::Recurrent::Network &r) const;
static std::unique_ptr<Network> deserialize(const SimpleJSON::Type::Object&);
typedef SimpleJSON::Factory<Network> Factory;
protected:
size_t inputSize=0;
size_t outputSize=0;
std::vector<NeuronInterface*> neurons;
std::vector<float> outputs;
SIMPLEJSON_REGISTER(NeuralNetwork::Recurrent::Network::Factory,NeuralNetwork::Recurrent::Network, deserialize)
};
}
}