Files
NeuralNetworkLib/include/NeuralNetwork/Recurrent/Network.h

88 lines
2.1 KiB
C++

#pragma once
#include "../Network.h"
#include "Neuron.h"
#include <vector>
#include <sstream>
#include <iomanip>
#include <limits>
namespace NeuralNetwork {
namespace Recurrent {
/**
* @author Tomas Cernik (Tom.Cernik@gmail.com)
* @brief Reccurent model of Artifical neural network
*/
class Network: public NeuralNetwork::Network {
public:
/**
* @brief Constructor for Network
* @param _inputSize is number of inputs to network
* @param _outputSize is size of output from network
* @param hiddenUnits is number of hiddenUnits to be created
*/
inline Network(size_t _inputSize, size_t _outputSize,size_t hiddenUnits=0):NeuralNetwork::Network(),inputSize(_inputSize),outputSize(_outputSize), neurons(0) {
for(size_t i=0;i<_inputSize+_outputSize;i++) {
addNeuron();
}
for(size_t i=0;i<hiddenUnits;i++) {
addNeuron();
}
};
// todo: implement
inline Network(const std::string &json) {
}
/**
* @brief Virtual destructor for Network
*/
virtual ~Network() {};
/**
* @brief This is a function to compute one iterations of network
* @param input is input of network
* @returns output of network
*/
inline virtual std::vector<float> computeOutput(const std::vector<float>& input) override {
return computeOutput(input,1);
}
/**
* @brief This is a function to compute iterations of network
* @param input is input of network
* @param iterations is number of iterations
* @returns output of network
*/
std::vector<float> computeOutput(const std::vector<float>& input, unsigned int iterations);
std::vector<Neuron>& getNeurons () {
return neurons;
}
using NeuralNetwork::Network::stringify;
void stringify(std::ostream& out) const override;
Neuron& addNeuron() {
neurons.push_back(Recurrent::Neuron(neurons.size()));
Neuron &newNeuron=neurons.back();
for(size_t i=0;i<neurons.size();i++) {
neurons[i].setWeight(newNeuron,0.0);
}
return newNeuron;
}
protected:
size_t inputSize=0;
size_t outputSize=0;
std::vector<Recurrent::Neuron> neurons;
};
}
}