49 lines
1.3 KiB
C++
49 lines
1.3 KiB
C++
#include "../src/NeuralNetwork/FeedForward"
|
|
#include "../src/NeuralNetwork/Learning/BackPropagation"
|
|
|
|
#include <iostream>
|
|
#include <vector>
|
|
|
|
//typedef Shin::NeuronNetwork::Problem X;
|
|
|
|
class X: public Shin::Problem
|
|
{
|
|
public:
|
|
X(const X& a) :Problem(a) {}
|
|
X(const std::vector<float> &a):Problem() {for(auto q:a){ data.push_back(q);}}
|
|
protected:
|
|
};
|
|
int main(int argc,char**)
|
|
{
|
|
srand(time(NULL));
|
|
std::vector<Shin::Solution> s;
|
|
std::vector<X> p;
|
|
|
|
p.push_back(X(std::vector<float>({0,0})));
|
|
s.push_back(Shin::Solution(std::vector<float>({0.4,0.3,0.2,0.1})));
|
|
p.push_back(X(std::vector<float>({0,0.5})));
|
|
s.push_back(Shin::Solution(std::vector<float>({0.6,0.3,0.2,0.5})));
|
|
p.push_back(X(std::vector<float>({0.4,0.5})));
|
|
s.push_back(Shin::Solution(std::vector<float>({0.4,0.4,0.2,0.8})));
|
|
Shin::NeuralNetwork::FeedForward q({2,4,4,4},1.0);
|
|
Shin::NeuralNetwork::Learning::BackPropagation bp(q);
|
|
bp.setLearningCoeficient(0.2);
|
|
for(int i=0;i<3;i++)
|
|
{
|
|
Shin::Solution sp =q.solve(p[i]);
|
|
std::cerr << sp[0] << "," << sp[1] << "," << sp[2] << "," << sp[3] << "\n";
|
|
}
|
|
for(int i=0;i<4;i++)
|
|
{
|
|
for(int j=0;j<3;j++)
|
|
{
|
|
bp.teach(p[j],s[j]);
|
|
}
|
|
}
|
|
std::cerr << "XXXXXXXXXXXX\n";
|
|
for(int i=0;i<3;i++)
|
|
{
|
|
Shin::Solution sp =q.solve(p[i]);
|
|
std::cerr << sp[0] << "," << sp[1] << "," << sp[2] << "," << sp[3] << "\n";
|
|
}
|
|
} |