quickProapagtion and tests
This commit is contained in:
@@ -46,32 +46,16 @@ endif(USE_SSE)
|
||||
include_directories(./include/)
|
||||
|
||||
set (LIBRARY_SOURCES
|
||||
include/NeuralNetwork/ActivationFunction/ActivationFunction.h
|
||||
include/NeuralNetwork/ActivationFunction/Heaviside.h
|
||||
include/NeuralNetwork/ActivationFunction/HyperbolicTangent.h
|
||||
include/NeuralNetwork/ActivationFunction/Linear.h
|
||||
include/NeuralNetwork/ActivationFunction/Sigmoid.h
|
||||
include/NeuralNetwork/ActivationFunction/StreamingActivationFunction.h
|
||||
include/NeuralNetwork/BasisFunction/BasisFunction.h
|
||||
include/NeuralNetwork/BasisFunction/Linear.h
|
||||
include/NeuralNetwork/BasisFunction/Product.h
|
||||
include/NeuralNetwork/BasisFunction/Radial.h
|
||||
include/NeuralNetwork/BasisFunction/StreamingBasisFunction.h
|
||||
include/NeuralNetwork/FeedForward/Layer.h
|
||||
include/NeuralNetwork/FeedForward/Network.h
|
||||
include/NeuralNetwork/Recurrent/Network.h
|
||||
include/NeuralNetwork/Network.h
|
||||
include/NeuralNetwork/Neuron.h
|
||||
include/NeuralNetwork/Stringifiable.h
|
||||
include/NeuralNetwork/Stringifiable.h
|
||||
src/NeuralNetwork/Learning/BackPropagation.cpp include/NeuralNetwork/Learning/BackPropagation.h
|
||||
include/sse_mathfun.h
|
||||
src/sse_mathfun.cpp
|
||||
|
||||
src/NeuralNetwork/Learning/BackPropagation.cpp
|
||||
src/NeuralNetwork/Learning/QuickPropagation.cpp
|
||||
|
||||
src/NeuralNetwork/BasisFunction/Linear.cpp
|
||||
src/NeuralNetwork/FeedForward/Layer.cpp
|
||||
src/NeuralNetwork/FeedForward/Network.cpp
|
||||
src/NeuralNetwork/Recurrent/Network.cpp
|
||||
src/NeuralNetwork/Neuron.cpp
|
||||
src/sse_mathfun.cpp
|
||||
)
|
||||
|
||||
add_library(NeuralNetwork STATIC ${LIBRARY_SOURCES})
|
||||
@@ -106,15 +90,20 @@ set_property(TEST feedforward PROPERTY LABELS unit)
|
||||
add_test(recurrent tests/recurrent)
|
||||
set_property(TEST recurrent PROPERTY LABELS unit)
|
||||
|
||||
add_test(feedforward_perf tests/feedforward_perf)
|
||||
set_property(TEST feedforward_perf PROPERTY LABELS perf)
|
||||
|
||||
add_test(optical_backpropagation tests/optical_backpropagation)
|
||||
set_property(TEST optical_backpropagation PROPERTY LABELS unit)
|
||||
|
||||
add_test(quickpropagation tests/quickpropagation)
|
||||
set_property(TEST quickpropagation PROPERTY LABELS unit)
|
||||
|
||||
|
||||
|
||||
add_test(feedforward_perf tests/feedforward_perf)
|
||||
set_property(TEST feedforward_perf PROPERTY LABELS perf)
|
||||
|
||||
add_test(quickpropagation_perf tests/quickpropagation_perf)
|
||||
set_property(TEST quickpropagation_perf PROPERTY LABELS perf)
|
||||
|
||||
add_test(backpropagation_perf tests/backpropagation_perf)
|
||||
set_property(TEST backpropagation_perf PROPERTY LABELS perf)
|
||||
|
||||
|
||||
@@ -33,7 +33,7 @@ namespace Learning {
|
||||
|
||||
protected:
|
||||
|
||||
inline void resize() {
|
||||
virtual inline void resize() {
|
||||
if(deltas.size()!=network.size())
|
||||
deltas.resize(network.size());
|
||||
|
||||
@@ -43,6 +43,8 @@ namespace Learning {
|
||||
}
|
||||
}
|
||||
|
||||
virtual void updateWeights(const std::vector<float> &input);
|
||||
|
||||
FeedForward::Network &network;
|
||||
|
||||
CorrectionFunction::CorrectionFunction *correctionFunction;
|
||||
|
||||
55
include/NeuralNetwork/Learning/QuickPropagation.h
Normal file
55
include/NeuralNetwork/Learning/QuickPropagation.h
Normal file
@@ -0,0 +1,55 @@
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
#include "BackPropagation.h"
|
||||
|
||||
namespace NeuralNetwork {
|
||||
namespace Learning {
|
||||
|
||||
/** @class QuickPropagation
|
||||
* @brief
|
||||
*/
|
||||
class QuickPropagation : public BackPropagation {
|
||||
|
||||
public:
|
||||
inline QuickPropagation(FeedForward::Network &feedForwardNetwork, CorrectionFunction::CorrectionFunction *correction = new CorrectionFunction::Linear()):
|
||||
BackPropagation(feedForwardNetwork,correction),deltasPrev() {
|
||||
resize();
|
||||
}
|
||||
|
||||
virtual ~QuickPropagation() {
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
virtual inline void resize() override {
|
||||
if(deltas.size()!=network.size())
|
||||
deltas.resize(network.size());
|
||||
|
||||
for(std::size_t i=0; i < network.size(); i++) {
|
||||
if(deltas[i].size()!=network[i].size())
|
||||
deltas[i].resize(network[i].size());
|
||||
}
|
||||
|
||||
if(deltasPrev.size()!=network.size())
|
||||
deltasPrev.resize(network.size());
|
||||
|
||||
for(std::size_t i=0; i < network.size(); i++) {
|
||||
if(deltasPrev[i].size()!=network[i].size())
|
||||
deltasPrev[i].resize(network[i].size());
|
||||
|
||||
for(std::size_t j=0; j < deltasPrev[i].size(); j++) {
|
||||
deltasPrev[i][j]=1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
virtual void updateWeights(const std::vector<float> &input) override;
|
||||
|
||||
std::vector<std::vector<float>> deltasPrev;
|
||||
};
|
||||
}
|
||||
}
|
||||
@@ -30,6 +30,11 @@ void NeuralNetwork::Learning::BackPropagation::teach(const std::vector<float> &i
|
||||
}
|
||||
}
|
||||
|
||||
updateWeights(input);
|
||||
}
|
||||
|
||||
void NeuralNetwork::Learning::BackPropagation::updateWeights(const std::vector<float> &input) {
|
||||
|
||||
for(std::size_t layerIndex=1;layerIndex<network.size();layerIndex++) {
|
||||
auto &layer=network[layerIndex];
|
||||
auto &prevLayer=network[layerIndex-1];
|
||||
@@ -52,4 +57,5 @@ void NeuralNetwork::Learning::BackPropagation::teach(const std::vector<float> &i
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
35
src/NeuralNetwork/Learning/QuickPropagation.cpp
Normal file
35
src/NeuralNetwork/Learning/QuickPropagation.cpp
Normal file
@@ -0,0 +1,35 @@
|
||||
#include <NeuralNetwork/Learning/QuickPropagation.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <immintrin.h>
|
||||
|
||||
void NeuralNetwork::Learning::QuickPropagation::updateWeights(const std::vector<float> &input) {
|
||||
|
||||
for(std::size_t layerIndex=1;layerIndex<network.size();layerIndex++) {
|
||||
auto &layer=network[layerIndex];
|
||||
auto &prevLayer=network[layerIndex-1];
|
||||
|
||||
std::size_t prevLayerSize=prevLayer.size();
|
||||
std::size_t layerSize=layer.size();
|
||||
|
||||
for(std::size_t j=1;j<layerSize;j++) {
|
||||
|
||||
//TODO: is this correct??
|
||||
float delta=deltas[layerIndex][j]/(deltasPrev[layerIndex][j]-deltas[layerIndex][j]);
|
||||
|
||||
deltas[layerIndex][j]=delta;
|
||||
|
||||
layer[j].weight(0)+=delta;
|
||||
|
||||
for(std::size_t k=1;k<prevLayerSize;k++) {
|
||||
if(layerIndex==1) {
|
||||
layer[j].weight(k)+=delta*input[k-1];
|
||||
} else {
|
||||
layer[j].weight(k)+=delta*prevLayer[k].output();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
deltas.swap(deltasPrev);
|
||||
}
|
||||
@@ -30,3 +30,12 @@ target_link_libraries(recurrent NeuralNetwork)
|
||||
|
||||
add_executable(recurrent_perf recurrent_perf.cpp)
|
||||
target_link_libraries(recurrent_perf NeuralNetwork)
|
||||
|
||||
add_executable(quickpropagation quickpropagation.cpp)
|
||||
target_link_libraries(quickpropagation NeuralNetwork)
|
||||
|
||||
add_executable(quickpropagation_perf quickpropagation_perf.cpp)
|
||||
target_link_libraries(quickpropagation_perf NeuralNetwork)
|
||||
|
||||
add_executable(propagation_cmp propagation_cmp.cpp)
|
||||
target_link_libraries(propagation_cmp NeuralNetwork)
|
||||
77
tests/propagation_cmp.cpp
Normal file
77
tests/propagation_cmp.cpp
Normal file
@@ -0,0 +1,77 @@
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include "../include/NeuralNetwork/Learning/BackPropagation.h"
|
||||
#include "../include/NeuralNetwork/Learning/QuickPropagation.h"
|
||||
#include "../include/NeuralNetwork/Learning/CorrectionFunction/Optical.h"
|
||||
#include "../include/NeuralNetwork/Learning/CorrectionFunction/ArcTangent.h"
|
||||
|
||||
#define LEARN(A,AR,B,BR,C,CR,D,DR,FUN,COEF,CLASS) \
|
||||
({\
|
||||
srand(rand);\
|
||||
NeuralNetwork::FeedForward::Network n(2);\
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);\
|
||||
n.appendLayer(2,a);\
|
||||
n.appendLayer(1,a);\
|
||||
n.randomizeWeights();\
|
||||
CLASS prop(n,FUN);\
|
||||
prop.setLearningCoefficient(COEF);\
|
||||
int error=1; int steps = 0; \
|
||||
while(error > 0 && steps <99999) {\
|
||||
steps++;\
|
||||
error=0;\
|
||||
prop.teach(A,{AR});\
|
||||
prop.teach(B,{BR});\
|
||||
prop.teach(C,{CR});\
|
||||
prop.teach(D,{DR});\
|
||||
error+=fabs(n.computeOutput(A)[0]-AR) > 0.1 ? 1:0;\
|
||||
error+=fabs(n.computeOutput(B)[0]-BR) > 0.1 ? 1:0;\
|
||||
error+=fabs(n.computeOutput(C)[0]-CR) > 0.1 ? 1:0;\
|
||||
error+=fabs(n.computeOutput(D)[0]-DR) > 0.1 ? 1:0;\
|
||||
}\
|
||||
steps;\
|
||||
})
|
||||
|
||||
int main() {
|
||||
long rand=(time(NULL));
|
||||
|
||||
const float linearCoef=0.7;
|
||||
const float opticalCoef=0.11;
|
||||
const float arcTangentCoef=0.6;
|
||||
const float arcTangent=1.5;
|
||||
|
||||
{
|
||||
std::cout << "XOR:\n";
|
||||
|
||||
std::cout << "\tBP: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef,NeuralNetwork::Learning::BackPropagation) << "\n";
|
||||
std::cout << "\tQP: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),0,std::vector<float>({0,1}),1,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef,NeuralNetwork::Learning::QuickPropagation) << "\n";
|
||||
|
||||
}
|
||||
{
|
||||
std::cout << "AND:\n";
|
||||
|
||||
std::cout << "\tBP: " <<
|
||||
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef,NeuralNetwork::Learning::BackPropagation) << "\n";
|
||||
|
||||
std::cout << "\tQP: " <<
|
||||
LEARN(std::vector<float>({1,0}),0,std::vector<float>({1,1}),1,std::vector<float>({0,0}),0,std::vector<float>({0,1}),0,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Optical,opticalCoef,NeuralNetwork::Learning::QuickPropagation) << "\n";
|
||||
}
|
||||
{
|
||||
std::cout << "AND:\n";
|
||||
|
||||
std::cout << "\tBP: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Linear,linearCoef,NeuralNetwork::Learning::BackPropagation) << "\n";
|
||||
|
||||
std::cout << "\tQP: " <<
|
||||
LEARN(std::vector<float>({1,0}),1,std::vector<float>({1,1}),0,std::vector<float>({0,0}),1,std::vector<float>({0,1}),1,
|
||||
new NeuralNetwork::Learning::CorrectionFunction::Optical,opticalCoef,NeuralNetwork::Learning::QuickPropagation) << "\n";
|
||||
}
|
||||
}
|
||||
116
tests/quickpropagation.cpp
Normal file
116
tests/quickpropagation.cpp
Normal file
@@ -0,0 +1,116 @@
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include "../include/NeuralNetwork/Learning/QuickPropagation.h"
|
||||
|
||||
int main() {
|
||||
{ // XOR problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::QuickPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
}
|
||||
{ // AND problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::QuickPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,1},{1});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{0});
|
||||
prop.teach({1,0},{0});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
}
|
||||
{ // NOT AND problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(2,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::QuickPropagation prop(n);
|
||||
for(int i=0;i<10000;i++) {
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{1});
|
||||
prop.teach({0,1},{1});
|
||||
prop.teach({1,0},{1});
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,1});
|
||||
assert(ret[0] < 0.1);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,1});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({1,0});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
|
||||
{
|
||||
std::vector<float> ret =n.computeOutput({0,0});
|
||||
assert(ret[0] > 0.9);
|
||||
}
|
||||
}
|
||||
}
|
||||
26
tests/quickpropagation_perf.cpp
Normal file
26
tests/quickpropagation_perf.cpp
Normal file
@@ -0,0 +1,26 @@
|
||||
#include <NeuralNetwork/FeedForward/Network.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include "../include/NeuralNetwork/Learning/QuickPropagation.h"
|
||||
|
||||
int main() {
|
||||
{ // XOR problem
|
||||
NeuralNetwork::FeedForward::Network n(2);
|
||||
NeuralNetwork::ActivationFunction::Sigmoid a(-1);
|
||||
n.appendLayer(200,a);
|
||||
n.appendLayer(500,a);
|
||||
n.appendLayer(900,a);
|
||||
n.appendLayer(1,a);
|
||||
|
||||
n.randomizeWeights();
|
||||
|
||||
NeuralNetwork::Learning::QuickPropagation prop(n);
|
||||
for(int i=0;i<100;i++) {
|
||||
prop.teach({1,0},{1});
|
||||
prop.teach({1,1},{0});
|
||||
prop.teach({0,0},{0});
|
||||
prop.teach({0,1},{1});
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user