Modification of BackPropagation added, some fixes and refactoring

This commit is contained in:
2014-11-11 22:06:16 +01:00
parent 42af5a4d2b
commit efbc8a4d1a
21 changed files with 588 additions and 94 deletions

View File

@@ -1,5 +1,5 @@
CXX=g++ -m64
CXXFLAGS+= -Wall -Wextra -pedantic -Weffc++ -Wshadow -Wstrict-aliasing -ansi
CXXFLAGS+= -Wall -Wextra -pedantic -Weffc++ -Wshadow -Wstrict-aliasing -ansi -Woverloaded-virtual -Wdelete-non-virtual-dtor
#CXXFLAGS+=-Werror
CXXFLAGS+= -g
CXXFLAGS+= -O3

View File

@@ -35,7 +35,8 @@ FeedForwardNetworkQuick::~FeedForwardNetworkQuick()
{
for (size_t j=0;j<layerSizes[i];j++)
{
delete[] weights[i][j];
if(j!=0)
delete[] weights[i][j];
}
delete[] weights[i];
delete[] potentials[i];
@@ -71,20 +72,20 @@ Solution FeedForwardNetworkQuick::solve(const Problem& p)
for(register size_t i=0;i<layers;i++)
{
double* newSolution= sums[i+1];//new bool[layerSizes[i]];
for(register size_t j=1;j<layerSizes[i];j++)
for( size_t j=1;j<layerSizes[i];j++)
{
register double q=sol[0]*weights[i][j][0];
for(register size_t k=1;k<prevSize;k++)
newSolution[j]=sol[0]*weights[i][j][0];
register size_t k;
for(k=1;k<prevSize;k++)
{
if(i==0)
{
q+=sol[k]*weights[i][j][k];
newSolution[j]+=sol[k]*weights[i][j][k];
}else
{
q+=(1.0/(1.0+exp(-lambda*sol[k])))*weights[i][j][k];
newSolution[j]+=(1.0/(1.0+exp(-lambda*sol[k])))*weights[i][j][k];
}
}
newSolution[j]=q;
}
prevSize=layerSizes[i];
sol=newSolution;

View File

@@ -99,7 +99,7 @@ namespace NeuronNetwork
weights[i][j]= new double[prev_size];
for(int k=0;k<prev_size;k++)
{
weights[i][j][k]=0.5-((double)(rand()%1000))/1000.0;
weights[i][j][k]=1.0-((double)(rand()%2001))/1000.0;
}
}
i++;

View File

@@ -5,16 +5,6 @@ Shin::NeuronNetwork::Learning::BackPropagation::BackPropagation(FeedForwardNetwo
}
double Shin::NeuronNetwork::Learning::BackPropagation::calculateError(const Shin::NeuronNetwork::Solution& expectation, const Shin::NeuronNetwork::Solution& solution)
{
register double a=0;
for (size_t i=0;i<expectation.size();i++)
{
a+=pow(expectation[i]-solution[i],2)/2;
}
return a;
}
void Shin::NeuronNetwork::Learning::BackPropagation::propagate(const Shin::NeuronNetwork::Solution& expectation)
{
double **deltas;
@@ -51,8 +41,10 @@ void Shin::NeuronNetwork::Learning::BackPropagation::propagate(const Shin::Neuro
max=network[i]->size();
else
max=network[i-1]->size();
for(size_t j=1;j<network[i]->size();j++)
size_t j=1;
int size=network[i]->size();
for(j=1;j<size;j++)
{
network[i]->operator[](j)->setWeight(0,network[i]->operator[](j)->getWeight(0)+deltas[i][j]*learningCoeficient);
for(size_t k=1;k<max;k++)
@@ -75,8 +67,19 @@ double Shin::NeuronNetwork::Learning::BackPropagation::teach(const Shin::NeuronN
{
Shin::NeuronNetwork::Solution a=network.solve(p);
double error=calculateError(solution,a);
propagate(solution);
std::vector<double> s;
if(entropy)
{
for(size_t i=0;i<solution.size();i++)
{
s.push_back(solution[i]*((double)(990+(rand()%21))/1000.0));
}
propagate(s);
}else
{
propagate(solution);
}
// std::cerr << "error: " << error << "\n";

View File

@@ -24,12 +24,14 @@ namespace Learning
{
public:
BackPropagation(FeedForwardNetworkQuick &n);
double calculateError(const Solution &expectation,const Solution &solution);
void propagate(const Shin::NeuronNetwork::Solution& expectation);
virtual void propagate(const Shin::NeuronNetwork::Solution& expectation);
double teach(const Shin::NeuronNetwork::Problem &p,const Solution &solution);
void setLearningCoeficient (double);
void allowEntropy() {entropy=1;}
protected:
double learningCoeficient=0.4;
bool entropy=1;
};
}
}

View File

@@ -0,0 +1 @@
./OpticalBackPropagation.h

View File

@@ -0,0 +1,65 @@
#include "./OpticalBackPropagation"
Shin::NeuronNetwork::Learning::OpticalBackPropagation::OpticalBackPropagation(FeedForwardNetworkQuick &n): BackPropagation(n)
{
}
void Shin::NeuronNetwork::Learning::OpticalBackPropagation::propagate(const Shin::NeuronNetwork::Solution& expectation)
{
double **deltas;
deltas=new double*[network.size()];
for(int i=(int)network.size()-1;i>=0;i--)
{
deltas[i]=new double[network[i]->size()];
deltas[i][0]=0.0;
if(i==(int)network.size()-1)
{
for(size_t j=1;j<network[i]->size();j++)
{
register double tmp=(expectation[j-1]-network[i]->operator[](j)->output());
deltas[i][j]= (1+exp(tmp*tmp))*network[i]->operator[](j)->derivatedOutput();
if(tmp <0)
{
deltas[i][j]=-deltas[i][j];
}
}
}else
{
for(size_t j=1;j<network[i]->size();j++)
{
register double deltasWeight = 0;
for(size_t k=1;k<network[i+1]->size();k++)
{
deltasWeight+=deltas[i+1][k]*network[i+1]->operator[](k)->getWeight(j);
}
deltas[i][j]=deltasWeight*network[i]->operator[](j)->derivatedOutput();
}
}
}
for(size_t i=0;i<network.size();i++)
{
size_t max;
if(i==0)
max=network[i]->size();
else
max=network[i-1]->size();
for(size_t j=1;j<network[i]->size();j++)
{
network[i]->operator[](j)->setWeight(0,network[i]->operator[](j)->getWeight(0)+deltas[i][j]*learningCoeficient);
for(size_t k=1;k<max;k++)
{
network[i]->operator[](j)->setWeight(k,
network[i]->operator[](j)->getWeight(k)+learningCoeficient* deltas[i][j]*
(i==0? network.sums[0][k]:(double)network[i-1]->operator[](k)->output()));
}
}
}
for(size_t i=0;i<network.size();i++)
{
delete[] deltas[i];
}
delete[] deltas;
}

View File

@@ -0,0 +1,33 @@
#ifndef _OPT_BACK_PROPAGATION_H_
#define _OPT_BACK_PROPAGATION_H_
#include <math.h>
#include <cstddef>
#include "../Solution.h"
#include "../FeedForwardQuick.h"
#include "BackPropagation"
/*
* http://proceedings.informingscience.org/InSITE2005/P106Otai.pdf
*
*
*/
namespace Shin
{
namespace NeuronNetwork
{
namespace Learning
{
class OpticalBackPropagation : public BackPropagation
{
public:
OpticalBackPropagation(FeedForwardNetworkQuick &n);
virtual void propagate(const Shin::NeuronNetwork::Solution& expectation) override;
protected:
};
}
}
}
#endif

View File

@@ -2,10 +2,10 @@
Shin::NeuronNetwork::Learning::Reinforcement::Reinforcement(Shin::NeuronNetwork::FeedForwardNetworkQuick& n): Unsupervised(n), p(n)
{
p.setLearningCoeficient(4.5);
p.setLearningCoeficient(9);
}
void Shin::NeuronNetwork::Learning::Reinforcement::setQualityFunction(std::function< double(const Solution &s) > f)
void Shin::NeuronNetwork::Learning::Reinforcement::setQualityFunction(std::function< double(const Problem&,const Solution&) > f)
{
qualityFunction=f;
}
@@ -13,7 +13,7 @@ void Shin::NeuronNetwork::Learning::Reinforcement::setQualityFunction(std::funct
double Shin::NeuronNetwork::Learning::Reinforcement::learn(const Shin::NeuronNetwork::Problem& problem)
{
Solution s=network.solve(problem);
double quality=qualityFunction(s);
double quality=qualityFunction(problem,s);
std::vector<double> q;
for(register size_t j=0;j<s.size();j++)
{
@@ -35,57 +35,12 @@ double Shin::NeuronNetwork::Learning::Reinforcement::learn(const Shin::NeuronNet
return quality;
}
void Shin::NeuronNetwork::Learning::Reinforcement::propagate(const Shin::NeuronNetwork::Solution& expectation,bool random)
double Shin::NeuronNetwork::Learning::Reinforcement::learnSet(const std::vector< Shin::NeuronNetwork::Problem* >& problems)
{
double **deltas;
deltas=new double*[network.size()];
for(int i=(int)network.size()-1;i>=0;i--)
double err=0;
for(Shin::NeuronNetwork::Problem *pr:problems)
{
deltas[i]=new double[network[i]->size()];
deltas[i][0]=0.0;
if(i==(int)network.size()-1)
{
for(size_t j=1;j<network[i]->size();j++)
{
deltas[i][j]= (expectation[j-1]-network[i]->operator[](j)->output())*network[i]->operator[](j)->derivatedOutput();
// std::cerr << "X "<< deltas[i][j] <" Z ";
}
}else
{
for(size_t j=1;j<network[i]->size();j++)
{
register double deltasWeight = 0;
for(size_t k=1;k<network[i+1]->size();k++)
{
deltasWeight+=deltas[i+1][k]*network[i+1]->operator[](k)->getWeight(j);
}
deltas[i][j]=deltasWeight*network[i]->operator[](j)->derivatedOutput();
}
}
err+=learn(*pr);
}
for(size_t i=0;i<network.size();i++)
{
size_t max;
if(i==0)
max=network[i]->size();
else
max=network[i-1]->size();
for(size_t j=1;j<network[i]->size();j++)
{
network[i]->operator[](j)->setWeight(0,network[i]->operator[](j)->getWeight(0)+deltas[i][j]*learningCoeficient);
for(size_t k=1;k<max;k++)
{
network[i]->operator[](j)->setWeight(k,
network[i]->operator[](j)->getWeight(k)+learningCoeficient* deltas[i][j]*
(i==0? network.sums[0][k]:(double)network[i-1]->operator[](k)->output()));
}
}
}
for(size_t i=0;i<network.size();i++)
{
delete[] deltas[i];
}
delete[] deltas;
}
return err/problems.size();
}

View File

@@ -27,13 +27,14 @@ namespace Learning
public:
Reinforcement(FeedForwardNetworkQuick &n);
void setQualityFunction(std::function<double(const Solution &s)>);
void setQualityFunction(std::function<double(const Problem&,const Solution&)>);
double learn(const Shin::NeuronNetwork::Problem &p);
void propagate(const Shin::NeuronNetwork::Solution& expectation,bool random=0);
double learnSet(const std::vector<Shin::NeuronNetwork::Problem*> &);
void setCoef(double q) {p.setLearningCoeficient(q);}
inline BackPropagation& getPropagator() {return p;}
protected:
double learningCoeficient=3;
std::function<double(const Solution &s)> qualityFunction=nullptr;
std::function<double(const Problem&,const Solution&)> qualityFunction=nullptr;
BackPropagation p;
};
}

View File

@@ -4,6 +4,27 @@ Shin::NeuronNetwork::Learning::Supervised::Supervised(Shin::NeuronNetwork::FeedF
}
double Shin::NeuronNetwork::Learning::Supervised::calculateError(const Shin::NeuronNetwork::Solution& expectation, const Shin::NeuronNetwork::Solution& solution)
{
register double a=0;
for (size_t i=0;i<expectation.size();i++)
{
a+=pow(expectation[i]-solution[i],2)/2;
}
return a;
}
double Shin::NeuronNetwork::Learning::Supervised::teachSet(std::vector< Shin::NeuronNetwork::Problem* >& p, std::vector< Shin::NeuronNetwork::Solution* >& solution)
{
double error=0;
for (register size_t i=0;i<p.size();i++)
{
error+=teach(*p[i],*solution[i]);
}
return error;
}
void Shin::NeuronNetwork::Learning::Supervised::debugOn()
{
debug=1;

View File

@@ -19,8 +19,9 @@ namespace Learning
Supervised() =delete;
Supervised(FeedForwardNetworkQuick &n);
virtual ~Supervised() {};
virtual double calculateError(const Solution &expectation,const Solution &solution)=0;
double calculateError(const Solution &expectation,const Solution &solution);
virtual double teach(const Shin::NeuronNetwork::Problem &p,const Solution &solution)=0;
double teachSet(std::vector<Shin::NeuronNetwork::Problem*> &p,std::vector<Shin::NeuronNetwork::Solution*> &solution);
void debugOn();
void debugOff();
protected:

View File

@@ -1,5 +1,6 @@
OBJFILES= Neuron.o Network.o FeedForward.o FeedForwardQuick.o \
Learning/Supervised.o Learning/Unsupervised.o Learning/Reinforcement.o Learning/BackPropagation.o \
OBJFILES= Neuron.o Network.o FeedForward.o FeedForwardQuick.o\
Learning/Supervised.o Learning/BackPropagation.o Learning/OpticalBackPropagation.o\
Learning/Unsupervised.o Learning/Reinforcement.o\
Solution.o Problem.o
LIBNAME=NeuronNetwork

View File

@@ -14,8 +14,8 @@ namespace NeuronNetwork
Problem();
virtual ~Problem(){};
operator std::vector<bool>() const;
protected:
virtual std::vector<bool> representation() const =0;
protected:
private:
};
}

View File

@@ -2,7 +2,11 @@ include ../Makefile.const
LIB_DIR = ../lib
GEN_TESTS=g-01 g-02
NN_TESTS= nn-reinforcement nn-01 nn-02 nn-03 nn-04
NN_TESTS= \
nn-bp-xor \
nn-obp-xor \
nn-rl-xor nn-rl-and \
nn-reinforcement nn-01 nn-02 nn-03 nn-04
ALL_TESTS=$(NN_TESTS) $(GEN_TESTS)
LIBS=$(LIB_DIR)/Genetics.a $(LIB_DIR)/NeuronNetwork.a

View File

@@ -31,25 +31,23 @@ int main()
s.push_back(Shin::NeuronNetwork::Solution(std::vector<double>({0})));
p.push_back(X(std::vector<bool>({1})));
Shin::NeuronNetwork::FeedForwardNetworkQuick q({1,1});
Shin::NeuronNetwork::FeedForwardNetworkQuick q({1,5000,5000,1});
Shin::NeuronNetwork::Learning::BackPropagation b(q);
int i=0;
std::cerr << i%4 <<". FOR: [" << p[i%2].representation()[0] << "] res: " << q.solve(p[i%2])[0] << " should be " << s[i%2][0]<<"\n";
for(int i=0;i<2000;i++)
for(int i=0;i<5;i++)
{
b.teach(p[i%2],s[i%2]);
std::cerr << i%2 <<". FOR: [" << p[i%2].representation()[0] << "] res: " << q.solve(p[i%2])[0] << " should be " << s[i%2][0]<<"\n";
//b.teach(p[i%2],s[i%2]);
// std::cerr << i%2 <<". FOR: [" << p[i%2].representation()[0] << "] res: " << q.solve(p[i%2])[0] << " should be " << s[i%2][0]<<"\n";
}
b.debugOn();
for(int i=0;i<2;i++)
{
b.teach(p[i%2],s[i%2]);
// b.teach(p[i%2],s[i%2]);
std::cerr << i%4 <<". FOR: [" << p[i%4].representation()[0] << "," <<p[i%4].representation()[0] << "] res: " << q.solve(p[i%4])[0] << " should be " <<
s[i%4][0]<<"\n";
}
b.debugOff();
/*
for(int i=0;i<40;i++)
{

74
tests/nn-04.cpp Normal file
View File

@@ -0,0 +1,74 @@
#include "../src/NeuronNetwork/Network"
#include <iostream>
class X: public Shin::NeuronNetwork::Problem
{
public: X(bool x,bool y):x(x),y(y) {}
protected: std::vector<bool> representation() const { return std::vector<bool>({x,y}); }
private:
bool x;
bool y;
};
int main()
{
srand(time(NULL));
int lm=5;
Shin::NeuronNetwork::FeedForwardNetwork net({2,lm,1});
bool x=1;
int prev_err=0;
int err=0;
int l;
int n;
int w;
int pot;
int wei;
int c=0;
std::cout << "\ntest 1 & 1 -" << net.solve(X(1,1))[0];
std::cout << "\ntest 1 & 0 -" << net.solve(X(1,0))[0];
std::cout << "\ntest 0 & 1 - " << net.solve(X(0,1))[0];
std::cout << "\ntest 0 & 0- " << net.solve(X(0,0))[0];
std::cout << "\n---------------------------------------";
do{
if(c%10000 ==1)
{
std::cout << "\nmixed";
srand(time(NULL));
}
err=0;
c++;
l=rand()%2+1;
n=rand()%lm;
w=rand()%2;
if(l==2)
n=0;
pot=net[l]->operator[](n)->getPotential();
net[l]->operator[](n)->setPotential(pot*(rand()%21+90)/100);
wei=net[l]->operator[](n)->getWeight(w);
net[l]->operator[](n)->setWeight(w,wei*(rand()%21+90)/100);
for(int i=0;i<100;i++)
{
bool x= rand()%2;
bool y=rand()%2;
Shin::NeuronNetwork::Solution s =net.solve(X(x,y));
if(s[0]!= (x xor y))
err++;
}
if(err > prev_err)
{
net[l]->operator[](n)->setPotential(pot);
net[l]->operator[](n)->setWeight(w,wei);
};
// std::cout << "C: " << c << " err: " << err << " prev: "<<prev_err << "\n";
prev_err=err;
if(err <1)
x=0;
}while(x);
std::cout << "\ntest 1 & 1 -" << net.solve(X(1,1))[0];
std::cout << "\ntest 1 & 0 -" << net.solve(X(1,0))[0];
std::cout << "\ntest 0 & 1 - " << net.solve(X(0,1))[0];
std::cout << "\ntest 0 & 0- " << net.solve(X(0,0))[0];
std::cout << "\nTotaly: " << c << "\n";
}

77
tests/nn-bp-xor.cpp Normal file
View File

@@ -0,0 +1,77 @@
#include "../src/NeuronNetwork/FeedForwardQuick"
#include "../src/NeuronNetwork/Learning/BackPropagation"
#include <iostream>
#include <vector>
class X: public Shin::NeuronNetwork::Problem
{
public:
X(const X& a) :q(a.q) {}
X(const std::vector<bool> &a):q(a) {}
std::vector<bool> representation() const
{
return q;
}
protected:
std::vector<bool> q;
};
int main()
{
for (int test=0;test<2;test++)
{
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,4,1});
Shin::NeuronNetwork::Learning::BackPropagation b(q);
srand(time(NULL));
std::vector<Shin::NeuronNetwork::Solution*> s;
std::vector<Shin::NeuronNetwork::Problem*> p;
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<double>({0})));
p.push_back(new X(std::vector<bool>({0,0})));
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<double>({1})));
p.push_back( new X(std::vector<bool>({1,0})));
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<double>({0})));
p.push_back(new X(std::vector<bool>({1,1})));
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<double>({1})));
p.push_back( new X(std::vector<bool>({0,1})));
if(test)
{
std::cerr << "Testing with entropy\n";
b.allowEntropy();
}else
{
std::cerr << "Testing without entropy\n";
}
b.setLearningCoeficient(0.1);//8);
for(int j=0;;j++)
{
double err=b.teachSet(p,s);
if(err <0.3)
{
// b.setLearningCoeficient(5);
}
if(err <0.1)
{
// b.setLearningCoeficient(0.2);
}
if(err <0.001)
{
std::cerr << j << "(" << err <<"):\n";
for(int i=0;i<4;i++)
{
std::cerr << "\t" << i%4 <<". FOR: [" << p[i%4]->representation()[0] << "," <<p[i%4]->representation()[1] << "] res: " <<
q.solve(*p[i%4])[0] << " should be " << s[i%4]->operator[](0)<<"\n";
}
}
if(err <0.001)
break;
}
}
}

78
tests/nn-obp-xor.cpp Normal file
View File

@@ -0,0 +1,78 @@
#include "../src/NeuronNetwork/FeedForwardQuick"
#include "../src/NeuronNetwork/Learning/OpticalBackPropagation"
#include <iostream>
#include <vector>
class X: public Shin::NeuronNetwork::Problem
{
public:
X(const X& a) :q(a.q) {}
X(const std::vector<bool> &a):q(a) {}
std::vector<bool> representation() const
{
return q;
}
protected:
std::vector<bool> q;
};
int main()
{
for (int test=0;test<2;test++)
{
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,4,1});
Shin::NeuronNetwork::Learning::OpticalBackPropagation b(q);
srand(time(NULL));
std::vector<Shin::NeuronNetwork::Solution*> s;
std::vector<Shin::NeuronNetwork::Problem*> p;
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<double>({0})));
p.push_back(new X(std::vector<bool>({0,0})));
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<double>({1})));
p.push_back( new X(std::vector<bool>({1,0})));
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<double>({0})));
p.push_back(new X(std::vector<bool>({1,1})));
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<double>({1})));
p.push_back( new X(std::vector<bool>({0,1})));
b.debugOn();
if(test)
{
std::cerr << "Testing with entropy\n";
b.allowEntropy();
}else
{
std::cerr << "Testing without entropy\n";
}
b.setLearningCoeficient(0.1);
for(int j=0;;j++)
{
double err=b.teachSet(p,s);
if(err <0.3)
{
// b.setLearningCoeficient(5);
}
if(err <0.1)
{
// b.setLearningCoeficient(0.2);
}
if(err <0.001)
{
std::cerr << j << "(" << err <<"):\n";
for(int i=0;i<4;i++)
{
std::cerr << "\t" << i%4 <<". FOR: [" << p[i%4]->representation()[0] << "," <<p[i%4]->representation()[1] << "] res: " <<
q.solve(*p[i%4])[0] << " should be " << s[i%4]->operator[](0)<<"\n";
}
}
if(err <0.001)
break;
}
}
}

85
tests/nn-rl-and.cpp Normal file
View File

@@ -0,0 +1,85 @@
#include "../src/NeuronNetwork/FeedForwardQuick"
#include "../src/NeuronNetwork/Learning/Reinforcement.h"
#include "../src/NeuronNetwork/Solution.h"
#include <iostream>
#include <vector>
class X: public Shin::NeuronNetwork::Problem
{
public:
X(const X& a) :q(a.q) {}
X(const std::vector<bool> &a):q(a) {}
std::vector<bool> representation() const
{
return q;
}
protected:
std::vector<bool> q;
};
int main()
{
srand(time(NULL));
std::vector<Shin::NeuronNetwork::Problem*> p;
p.push_back(new X(std::vector<bool>({0,0})));
p.push_back(new X(std::vector<bool>({1,1})));
Shin::NeuronNetwork::FeedForwardNetworkQuick q({1,1});
Shin::NeuronNetwork::Learning::Reinforcement b(q);
int i=0;
double targetQuality=1.4;
b.setQualityFunction(
[](const Shin::NeuronNetwork::Problem &pr,const Shin::NeuronNetwork::Solution &s)->double
{
if(pr.representation()[0]==0)
{
//ocekavame 1
int e=(s[0]-0.80)*15.0;//+(abs(s[1])-0.5)*100.0;
return e;
}else
{
//ocekavame 0
int e=(0.20-s[0])*15.0;//+(0.4-abs(s[1]))*100.0;
return e;
}
return 1.0;
});
for(i=0;i < 500000000;i++)
{
double err=b.learnSet(p);
if(i%100000==0)
srand(time(NULL));
if(err > targetQuality)
{
std::cerr << i << " ("<< err <<").\n";
for(int j=0;j<2;j++)
{
std::cerr << j%4 <<". FOR: [" << p[j%4]->representation()[0] << "," <<p[j%4]->representation()[0] << "] res: " << q.solve(*p[j%4])[0] << "\n";
}
}
if(err >targetQuality)
break;
}
/* int i=0;
std::cerr << i%4 <<". FOR: [" << p[i%2].representation()[0] << "] res: " << q.solve(p[i%2])[0] << " should be " << s[i%2][0]<<"\n";
for(int i=0;i<2000;i++)sa
{
b.teach(p[i%2],s[i%2]);
std::cerr << i%2 <<". FOR: [" << p[i%2].representation()[0] << "] res: " << q.solve(p[i%2])[0] << " should be " << s[i%2][0]<<"\n";
}
b.debugOn();
for(int i=0;i<2;i++)
{
b.teach(p[i%2],s[i%2]);
std::cerr << i%4 <<". FOR: [" << p[i%4].representation()[0] << "," <<p[i%4].representation()[0] << "] res: " << q.solve(p[i%4])[0] << " should be " <<
s[i%4][0]<<"\n";
}
b.debugOff();*/
}

94
tests/nn-rl-xor.cpp Normal file
View File

@@ -0,0 +1,94 @@
#include "../src/NeuronNetwork/FeedForwardQuick"
#include "../src/NeuronNetwork/Learning/Reinforcement"
#include <iostream>
#include <vector>
class X: public Shin::NeuronNetwork::Problem
{
public:
X(const X& a) :q(a.q) {}
X(const std::vector<bool> &a):q(a) {}
std::vector<bool> representation() const
{
return q;
}
protected:
std::vector<bool> q;
};
int main()
{
for (int test=0;test<2;test++)
{
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,6,1});
Shin::NeuronNetwork::Learning::Reinforcement b(q);
b.setQualityFunction(
[](const Shin::NeuronNetwork::Problem &pr,const Shin::NeuronNetwork::Solution &s)->double
{
std::vector <bool> p=pr;
double expect=0.0;
if(p[0] && p[1])
expect=0;
else if(p[0] && !p[1])
expect=1;
else if(!p[0] && !p[1])
expect=0;
else if(!p[0] && p[1])
expect=1;
// std::cerr << "expected: " << expect << " got " << s[0];
if(expect==0)
{
expect=0.35-s[0];
}else
{
expect=s[0]-0.65;
}
// std::cerr << " returnning " << expect*5.0 << "\n";
return expect*5.0;
});
srand(time(NULL));
std::vector<Shin::NeuronNetwork::Problem*> p;
p.push_back(new X(std::vector<bool>({0,0})));
p.push_back( new X(std::vector<bool>({1,0})));
p.push_back( new X(std::vector<bool>({0,1})));
p.push_back(new X(std::vector<bool>({1,1})));
if(test)
{
std::cerr << "Testing with entropy ...\n";
b.getPropagator().allowEntropy();
}else
{
std::cerr << "Testing without entropy ...\n";
}
double targetQuality =1.5;
for(int i=0;i < 500000000;i++)
{
double err=b.learnSet(p);
if(i%100000==0)
srand(time(NULL));
if(i%20000==0 || err > targetQuality)
{
std::cerr << i << " ("<< err <<").\n";
for(int j=0;j<4;j++)
{
std::cerr << "\t" << j%4 << ". FOR: [" << p[j%4]->representation()[0] << "," <<p[j%4]->representation()[1] << "] res: " <<
q.solve(*p[j%4])[0] << "\n";
}
}
if(err >targetQuality)
break;
}
}
}