Modification of BackPropagation added, some fixes and refactoring
This commit is contained in:
@@ -2,7 +2,11 @@ include ../Makefile.const
|
||||
|
||||
LIB_DIR = ../lib
|
||||
GEN_TESTS=g-01 g-02
|
||||
NN_TESTS= nn-reinforcement nn-01 nn-02 nn-03 nn-04
|
||||
NN_TESTS= \
|
||||
nn-bp-xor \
|
||||
nn-obp-xor \
|
||||
nn-rl-xor nn-rl-and \
|
||||
nn-reinforcement nn-01 nn-02 nn-03 nn-04
|
||||
ALL_TESTS=$(NN_TESTS) $(GEN_TESTS)
|
||||
|
||||
LIBS=$(LIB_DIR)/Genetics.a $(LIB_DIR)/NeuronNetwork.a
|
||||
|
||||
@@ -31,25 +31,23 @@ int main()
|
||||
s.push_back(Shin::NeuronNetwork::Solution(std::vector<double>({0})));
|
||||
p.push_back(X(std::vector<bool>({1})));
|
||||
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({1,1});
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({1,5000,5000,1});
|
||||
Shin::NeuronNetwork::Learning::BackPropagation b(q);
|
||||
|
||||
int i=0;
|
||||
std::cerr << i%4 <<". FOR: [" << p[i%2].representation()[0] << "] res: " << q.solve(p[i%2])[0] << " should be " << s[i%2][0]<<"\n";
|
||||
|
||||
for(int i=0;i<2000;i++)
|
||||
for(int i=0;i<5;i++)
|
||||
{
|
||||
b.teach(p[i%2],s[i%2]);
|
||||
std::cerr << i%2 <<". FOR: [" << p[i%2].representation()[0] << "] res: " << q.solve(p[i%2])[0] << " should be " << s[i%2][0]<<"\n";
|
||||
//b.teach(p[i%2],s[i%2]);
|
||||
// std::cerr << i%2 <<". FOR: [" << p[i%2].representation()[0] << "] res: " << q.solve(p[i%2])[0] << " should be " << s[i%2][0]<<"\n";
|
||||
}
|
||||
b.debugOn();
|
||||
for(int i=0;i<2;i++)
|
||||
{
|
||||
b.teach(p[i%2],s[i%2]);
|
||||
// b.teach(p[i%2],s[i%2]);
|
||||
std::cerr << i%4 <<". FOR: [" << p[i%4].representation()[0] << "," <<p[i%4].representation()[0] << "] res: " << q.solve(p[i%4])[0] << " should be " <<
|
||||
s[i%4][0]<<"\n";
|
||||
}
|
||||
b.debugOff();
|
||||
/*
|
||||
for(int i=0;i<40;i++)
|
||||
{
|
||||
|
||||
74
tests/nn-04.cpp
Normal file
74
tests/nn-04.cpp
Normal file
@@ -0,0 +1,74 @@
|
||||
#include "../src/NeuronNetwork/Network"
|
||||
|
||||
#include <iostream>
|
||||
class X: public Shin::NeuronNetwork::Problem
|
||||
{
|
||||
public: X(bool x,bool y):x(x),y(y) {}
|
||||
protected: std::vector<bool> representation() const { return std::vector<bool>({x,y}); }
|
||||
private:
|
||||
bool x;
|
||||
bool y;
|
||||
};
|
||||
|
||||
int main()
|
||||
{
|
||||
srand(time(NULL));
|
||||
int lm=5;
|
||||
Shin::NeuronNetwork::FeedForwardNetwork net({2,lm,1});
|
||||
bool x=1;
|
||||
int prev_err=0;
|
||||
int err=0;
|
||||
int l;
|
||||
int n;
|
||||
int w;
|
||||
int pot;
|
||||
int wei;
|
||||
int c=0;
|
||||
std::cout << "\ntest 1 & 1 -" << net.solve(X(1,1))[0];
|
||||
std::cout << "\ntest 1 & 0 -" << net.solve(X(1,0))[0];
|
||||
std::cout << "\ntest 0 & 1 - " << net.solve(X(0,1))[0];
|
||||
std::cout << "\ntest 0 & 0- " << net.solve(X(0,0))[0];
|
||||
std::cout << "\n---------------------------------------";
|
||||
do{
|
||||
if(c%10000 ==1)
|
||||
{
|
||||
std::cout << "\nmixed";
|
||||
srand(time(NULL));
|
||||
}
|
||||
err=0;
|
||||
c++;
|
||||
l=rand()%2+1;
|
||||
n=rand()%lm;
|
||||
w=rand()%2;
|
||||
if(l==2)
|
||||
n=0;
|
||||
pot=net[l]->operator[](n)->getPotential();
|
||||
net[l]->operator[](n)->setPotential(pot*(rand()%21+90)/100);
|
||||
wei=net[l]->operator[](n)->getWeight(w);
|
||||
net[l]->operator[](n)->setWeight(w,wei*(rand()%21+90)/100);
|
||||
|
||||
for(int i=0;i<100;i++)
|
||||
{
|
||||
bool x= rand()%2;
|
||||
bool y=rand()%2;
|
||||
Shin::NeuronNetwork::Solution s =net.solve(X(x,y));
|
||||
if(s[0]!= (x xor y))
|
||||
err++;
|
||||
}
|
||||
|
||||
if(err > prev_err)
|
||||
{
|
||||
net[l]->operator[](n)->setPotential(pot);
|
||||
net[l]->operator[](n)->setWeight(w,wei);
|
||||
};
|
||||
// std::cout << "C: " << c << " err: " << err << " prev: "<<prev_err << "\n";
|
||||
prev_err=err;
|
||||
if(err <1)
|
||||
x=0;
|
||||
}while(x);
|
||||
std::cout << "\ntest 1 & 1 -" << net.solve(X(1,1))[0];
|
||||
std::cout << "\ntest 1 & 0 -" << net.solve(X(1,0))[0];
|
||||
std::cout << "\ntest 0 & 1 - " << net.solve(X(0,1))[0];
|
||||
std::cout << "\ntest 0 & 0- " << net.solve(X(0,0))[0];
|
||||
std::cout << "\nTotaly: " << c << "\n";
|
||||
}
|
||||
77
tests/nn-bp-xor.cpp
Normal file
77
tests/nn-bp-xor.cpp
Normal file
@@ -0,0 +1,77 @@
|
||||
#include "../src/NeuronNetwork/FeedForwardQuick"
|
||||
#include "../src/NeuronNetwork/Learning/BackPropagation"
|
||||
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
class X: public Shin::NeuronNetwork::Problem
|
||||
{
|
||||
public:
|
||||
X(const X& a) :q(a.q) {}
|
||||
X(const std::vector<bool> &a):q(a) {}
|
||||
std::vector<bool> representation() const
|
||||
{
|
||||
return q;
|
||||
}
|
||||
protected:
|
||||
std::vector<bool> q;
|
||||
};
|
||||
|
||||
int main()
|
||||
{
|
||||
|
||||
for (int test=0;test<2;test++)
|
||||
{
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,4,1});
|
||||
Shin::NeuronNetwork::Learning::BackPropagation b(q);
|
||||
|
||||
srand(time(NULL));
|
||||
std::vector<Shin::NeuronNetwork::Solution*> s;
|
||||
std::vector<Shin::NeuronNetwork::Problem*> p;
|
||||
|
||||
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<double>({0})));
|
||||
p.push_back(new X(std::vector<bool>({0,0})));
|
||||
|
||||
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<double>({1})));
|
||||
p.push_back( new X(std::vector<bool>({1,0})));
|
||||
|
||||
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<double>({0})));
|
||||
p.push_back(new X(std::vector<bool>({1,1})));
|
||||
|
||||
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<double>({1})));
|
||||
p.push_back( new X(std::vector<bool>({0,1})));
|
||||
|
||||
if(test)
|
||||
{
|
||||
std::cerr << "Testing with entropy\n";
|
||||
b.allowEntropy();
|
||||
}else
|
||||
{
|
||||
std::cerr << "Testing without entropy\n";
|
||||
}
|
||||
b.setLearningCoeficient(0.1);//8);
|
||||
for(int j=0;;j++)
|
||||
{
|
||||
double err=b.teachSet(p,s);
|
||||
if(err <0.3)
|
||||
{
|
||||
// b.setLearningCoeficient(5);
|
||||
}
|
||||
if(err <0.1)
|
||||
{
|
||||
// b.setLearningCoeficient(0.2);
|
||||
}
|
||||
if(err <0.001)
|
||||
{
|
||||
std::cerr << j << "(" << err <<"):\n";
|
||||
for(int i=0;i<4;i++)
|
||||
{
|
||||
std::cerr << "\t" << i%4 <<". FOR: [" << p[i%4]->representation()[0] << "," <<p[i%4]->representation()[1] << "] res: " <<
|
||||
q.solve(*p[i%4])[0] << " should be " << s[i%4]->operator[](0)<<"\n";
|
||||
}
|
||||
}
|
||||
if(err <0.001)
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
78
tests/nn-obp-xor.cpp
Normal file
78
tests/nn-obp-xor.cpp
Normal file
@@ -0,0 +1,78 @@
|
||||
#include "../src/NeuronNetwork/FeedForwardQuick"
|
||||
#include "../src/NeuronNetwork/Learning/OpticalBackPropagation"
|
||||
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
class X: public Shin::NeuronNetwork::Problem
|
||||
{
|
||||
public:
|
||||
X(const X& a) :q(a.q) {}
|
||||
X(const std::vector<bool> &a):q(a) {}
|
||||
std::vector<bool> representation() const
|
||||
{
|
||||
return q;
|
||||
}
|
||||
protected:
|
||||
std::vector<bool> q;
|
||||
};
|
||||
|
||||
int main()
|
||||
{
|
||||
|
||||
for (int test=0;test<2;test++)
|
||||
{
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,4,1});
|
||||
Shin::NeuronNetwork::Learning::OpticalBackPropagation b(q);
|
||||
|
||||
srand(time(NULL));
|
||||
std::vector<Shin::NeuronNetwork::Solution*> s;
|
||||
std::vector<Shin::NeuronNetwork::Problem*> p;
|
||||
|
||||
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<double>({0})));
|
||||
p.push_back(new X(std::vector<bool>({0,0})));
|
||||
|
||||
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<double>({1})));
|
||||
p.push_back( new X(std::vector<bool>({1,0})));
|
||||
|
||||
s.push_back(new Shin::NeuronNetwork::Solution(std::vector<double>({0})));
|
||||
p.push_back(new X(std::vector<bool>({1,1})));
|
||||
|
||||
s.push_back( new Shin::NeuronNetwork::Solution(std::vector<double>({1})));
|
||||
p.push_back( new X(std::vector<bool>({0,1})));
|
||||
|
||||
b.debugOn();
|
||||
if(test)
|
||||
{
|
||||
std::cerr << "Testing with entropy\n";
|
||||
b.allowEntropy();
|
||||
}else
|
||||
{
|
||||
std::cerr << "Testing without entropy\n";
|
||||
}
|
||||
b.setLearningCoeficient(0.1);
|
||||
for(int j=0;;j++)
|
||||
{
|
||||
double err=b.teachSet(p,s);
|
||||
if(err <0.3)
|
||||
{
|
||||
// b.setLearningCoeficient(5);
|
||||
}
|
||||
if(err <0.1)
|
||||
{
|
||||
// b.setLearningCoeficient(0.2);
|
||||
}
|
||||
if(err <0.001)
|
||||
{
|
||||
std::cerr << j << "(" << err <<"):\n";
|
||||
for(int i=0;i<4;i++)
|
||||
{
|
||||
std::cerr << "\t" << i%4 <<". FOR: [" << p[i%4]->representation()[0] << "," <<p[i%4]->representation()[1] << "] res: " <<
|
||||
q.solve(*p[i%4])[0] << " should be " << s[i%4]->operator[](0)<<"\n";
|
||||
}
|
||||
}
|
||||
if(err <0.001)
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
85
tests/nn-rl-and.cpp
Normal file
85
tests/nn-rl-and.cpp
Normal file
@@ -0,0 +1,85 @@
|
||||
#include "../src/NeuronNetwork/FeedForwardQuick"
|
||||
#include "../src/NeuronNetwork/Learning/Reinforcement.h"
|
||||
#include "../src/NeuronNetwork/Solution.h"
|
||||
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
class X: public Shin::NeuronNetwork::Problem
|
||||
{
|
||||
public:
|
||||
X(const X& a) :q(a.q) {}
|
||||
X(const std::vector<bool> &a):q(a) {}
|
||||
std::vector<bool> representation() const
|
||||
{
|
||||
return q;
|
||||
}
|
||||
protected:
|
||||
std::vector<bool> q;
|
||||
};
|
||||
|
||||
int main()
|
||||
{
|
||||
srand(time(NULL));
|
||||
|
||||
std::vector<Shin::NeuronNetwork::Problem*> p;
|
||||
|
||||
p.push_back(new X(std::vector<bool>({0,0})));
|
||||
|
||||
p.push_back(new X(std::vector<bool>({1,1})));
|
||||
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({1,1});
|
||||
Shin::NeuronNetwork::Learning::Reinforcement b(q);
|
||||
int i=0;
|
||||
double targetQuality=1.4;
|
||||
b.setQualityFunction(
|
||||
[](const Shin::NeuronNetwork::Problem &pr,const Shin::NeuronNetwork::Solution &s)->double
|
||||
{
|
||||
if(pr.representation()[0]==0)
|
||||
{
|
||||
//ocekavame 1
|
||||
int e=(s[0]-0.80)*15.0;//+(abs(s[1])-0.5)*100.0;
|
||||
return e;
|
||||
}else
|
||||
{
|
||||
//ocekavame 0
|
||||
int e=(0.20-s[0])*15.0;//+(0.4-abs(s[1]))*100.0;
|
||||
return e;
|
||||
}
|
||||
return 1.0;
|
||||
});
|
||||
for(i=0;i < 500000000;i++)
|
||||
{
|
||||
double err=b.learnSet(p);
|
||||
|
||||
if(i%100000==0)
|
||||
srand(time(NULL));
|
||||
if(err > targetQuality)
|
||||
{
|
||||
std::cerr << i << " ("<< err <<").\n";
|
||||
for(int j=0;j<2;j++)
|
||||
{
|
||||
std::cerr << j%4 <<". FOR: [" << p[j%4]->representation()[0] << "," <<p[j%4]->representation()[0] << "] res: " << q.solve(*p[j%4])[0] << "\n";
|
||||
}
|
||||
}
|
||||
if(err >targetQuality)
|
||||
break;
|
||||
}
|
||||
|
||||
/* int i=0;
|
||||
std::cerr << i%4 <<". FOR: [" << p[i%2].representation()[0] << "] res: " << q.solve(p[i%2])[0] << " should be " << s[i%2][0]<<"\n";
|
||||
|
||||
for(int i=0;i<2000;i++)sa
|
||||
{
|
||||
b.teach(p[i%2],s[i%2]);
|
||||
std::cerr << i%2 <<". FOR: [" << p[i%2].representation()[0] << "] res: " << q.solve(p[i%2])[0] << " should be " << s[i%2][0]<<"\n";
|
||||
}
|
||||
b.debugOn();
|
||||
for(int i=0;i<2;i++)
|
||||
{
|
||||
b.teach(p[i%2],s[i%2]);
|
||||
std::cerr << i%4 <<". FOR: [" << p[i%4].representation()[0] << "," <<p[i%4].representation()[0] << "] res: " << q.solve(p[i%4])[0] << " should be " <<
|
||||
s[i%4][0]<<"\n";
|
||||
}
|
||||
b.debugOff();*/
|
||||
}
|
||||
94
tests/nn-rl-xor.cpp
Normal file
94
tests/nn-rl-xor.cpp
Normal file
@@ -0,0 +1,94 @@
|
||||
#include "../src/NeuronNetwork/FeedForwardQuick"
|
||||
#include "../src/NeuronNetwork/Learning/Reinforcement"
|
||||
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
class X: public Shin::NeuronNetwork::Problem
|
||||
{
|
||||
public:
|
||||
X(const X& a) :q(a.q) {}
|
||||
X(const std::vector<bool> &a):q(a) {}
|
||||
std::vector<bool> representation() const
|
||||
{
|
||||
return q;
|
||||
}
|
||||
protected:
|
||||
std::vector<bool> q;
|
||||
};
|
||||
|
||||
int main()
|
||||
{
|
||||
|
||||
for (int test=0;test<2;test++)
|
||||
{
|
||||
Shin::NeuronNetwork::FeedForwardNetworkQuick q({2,6,1});
|
||||
Shin::NeuronNetwork::Learning::Reinforcement b(q);
|
||||
b.setQualityFunction(
|
||||
[](const Shin::NeuronNetwork::Problem &pr,const Shin::NeuronNetwork::Solution &s)->double
|
||||
{
|
||||
std::vector <bool> p=pr;
|
||||
double expect=0.0;
|
||||
if(p[0] && p[1])
|
||||
expect=0;
|
||||
else if(p[0] && !p[1])
|
||||
expect=1;
|
||||
else if(!p[0] && !p[1])
|
||||
expect=0;
|
||||
else if(!p[0] && p[1])
|
||||
expect=1;
|
||||
|
||||
// std::cerr << "expected: " << expect << " got " << s[0];
|
||||
|
||||
if(expect==0)
|
||||
{
|
||||
expect=0.35-s[0];
|
||||
}else
|
||||
{
|
||||
expect=s[0]-0.65;
|
||||
}
|
||||
|
||||
// std::cerr << " returnning " << expect*5.0 << "\n";
|
||||
|
||||
return expect*5.0;
|
||||
});
|
||||
|
||||
srand(time(NULL));
|
||||
|
||||
std::vector<Shin::NeuronNetwork::Problem*> p;
|
||||
|
||||
p.push_back(new X(std::vector<bool>({0,0})));
|
||||
p.push_back( new X(std::vector<bool>({1,0})));
|
||||
p.push_back( new X(std::vector<bool>({0,1})));
|
||||
p.push_back(new X(std::vector<bool>({1,1})));
|
||||
|
||||
if(test)
|
||||
{
|
||||
std::cerr << "Testing with entropy ...\n";
|
||||
b.getPropagator().allowEntropy();
|
||||
}else
|
||||
{
|
||||
std::cerr << "Testing without entropy ...\n";
|
||||
}
|
||||
double targetQuality =1.5;
|
||||
|
||||
for(int i=0;i < 500000000;i++)
|
||||
{
|
||||
double err=b.learnSet(p);
|
||||
|
||||
if(i%100000==0)
|
||||
srand(time(NULL));
|
||||
if(i%20000==0 || err > targetQuality)
|
||||
{
|
||||
std::cerr << i << " ("<< err <<").\n";
|
||||
for(int j=0;j<4;j++)
|
||||
{
|
||||
std::cerr << "\t" << j%4 << ". FOR: [" << p[j%4]->representation()[0] << "," <<p[j%4]->representation()[1] << "] res: " <<
|
||||
q.solve(*p[j%4])[0] << "\n";
|
||||
}
|
||||
}
|
||||
if(err >targetQuality)
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user