42 lines
742 B
C++
42 lines
742 B
C++
#include <NeuralNetwork/Learning/PerceptronLearning.h>
|
|
|
|
#include <cassert>
|
|
#include <iostream>
|
|
|
|
int main() {
|
|
{ // XOR problem
|
|
NeuralNetwork::FeedForward::Perceptron n(2,1);
|
|
|
|
n.randomizeWeights();
|
|
|
|
NeuralNetwork::Learning::PerceptronLearning learn(n);
|
|
|
|
for(int i=0;i<10;i++) {
|
|
learn.teach({1,0},{1});
|
|
learn.teach({1,1},{1});
|
|
learn.teach({0,0},{0});
|
|
learn.teach({0,1},{1});
|
|
}
|
|
|
|
{
|
|
std::vector<float> ret =n.computeOutput({1,1});
|
|
assert(ret[0] > 0.9);
|
|
}
|
|
|
|
{
|
|
std::vector<float> ret =n.computeOutput({0,1});
|
|
assert(ret[0] > 0.9);
|
|
}
|
|
|
|
{
|
|
std::vector<float> ret =n.computeOutput({1,0});
|
|
assert(ret[0] > 0.9);
|
|
}
|
|
|
|
{
|
|
std::vector<float> ret =n.computeOutput({0,0});
|
|
assert(ret[0] < 0.1);
|
|
}
|
|
}
|
|
}
|